

Feynman checkers: external electromagnetic field and asymptotic properties

Fedor Ozhegov

HSE University
12 February 2023

- Basic model (if needed)
- Model with external field
- Exact solution
- Continuum limit

Basic model

Fix $m \geq 0$ called the mass of an electron. Consider an infinite checkerboard made of squares $\varepsilon \times \varepsilon$. The checker moves to the diagonal-neighboring squares, either upwards-right or upwards-left. To each path s of the checker we assign a vector a(s) as follows:

- Initially the vector is directed upwards and has unit length;
- After each turn of the checker it is rotated by 90° clockwise and multiplied by $m \varepsilon$;
- At the end of the motion the vector is shrinked by a factor of $\left(1+m^{2} \varepsilon^{2}\right)^{\frac{t / \varepsilon-1}{2}}$, where t / ε is the total number of moves.

(by V. Skopenkova)

Basic model

Denote by $a(x, t, m, \varepsilon):=\sum_{s} a(s)$ the sum overall checker paths from the square $(0,0)$ to the square (x, t), starting from the upwards-right move. The length square of the vector $a(x, t, m \varepsilon)$ is called the probability to find an electron in the square (x, t) if it was emitted from the origin and the vector itself is called the arrow or the wave function.

$$
\bar{a}(1,3,1)=\left(\frac{1}{2},-\frac{1}{2}\right), P(1,3,1)=\frac{1}{2}
$$

Basic model

4	$\mathrm{p}=1 / 8$		$\stackrel{\dagger}{p=1 / 8}$		$\underset{p=5 / 8}{ }$		4 $\mathrm{p}=1 / 8$	\| $\frac{1}{2 \sqrt{2}}$
3		$p=1 / 4$		$\begin{gathered} 1 / 2 \\ p=1 / 2 \end{gathered}$		4 $p=1 / 4$		$1 \frac{1}{2}$
2			$p=1 / 2$		4 $p=1 / 2$			\| $\frac{1}{\sqrt{2}}$
1				$\mathrm{p}=1$				\| 1
0			\bigcirc					
	-2	-1		$\begin{gathered} 1 \\ \text { V. Skope } \end{gathered}$	2 a)	3	4	

Model with external field

For integer $x / \varepsilon, t / \varepsilon$ the homogeneous field u_{ε} is given by the formula

$$
u_{\varepsilon}(x+\varepsilon / 2, t+\varepsilon / 2)= \begin{cases}-1, & \text { if }(t-x) / 4 \varepsilon \in \mathbb{Z} \\ 1, & \text { otherwise }\end{cases}
$$

Model with external field

Definition 1.

Fix ε and $m \geq 0$. Consider the lattice $\varepsilon \mathbb{Z}^{2}=\{(x, t): x / \varepsilon, t / \varepsilon \in \mathbb{Z}\}$. Let u be a map from $\left\{(x, t): x / \varepsilon, t / \varepsilon \in \mathbb{Z}+\frac{1}{2}\right\}$ into $\{ \pm 1\}$. Denote by

$$
\begin{aligned}
& a(x, t, m, \varepsilon, u):= \\
& \left(1+m^{2} \varepsilon^{2}\right)^{(1-t / \varepsilon) / 2} i \sum_{s}(-i m \varepsilon)^{\mathrm{turns}(s)} u\left(\frac{s_{0}+s_{1}}{2}\right) u\left(\frac{s_{1}+s_{2}}{2}\right) \ldots u\left(\frac{s_{t / \varepsilon-1}+s_{t / \varepsilon}}{2}\right)
\end{aligned}
$$

the sum over all checker paths $s=\left(s_{0}, s_{1}, \ldots, s_{t / \varepsilon}\right)$, such that $s_{0}=(0,0)$, $s_{1}=(\varepsilon, \varepsilon), s_{t / \varepsilon}=(x, t)$.
Denote

$$
\begin{aligned}
& a_{1}(x, t, m, \varepsilon, u):=\operatorname{Re} a(x, t, m, \varepsilon, u) \\
& a_{2}(x, t, m, \varepsilon, u):=\operatorname{Im} a(x, t, m, \varepsilon, u)
\end{aligned}
$$

The value $|a(x, t, m, \varepsilon, u)|^{2}$ is called the probability to find an electron of mass m at the point (x, t) on the lattice of step ε, if it was emitted from the point $(0,0)$ and moved in the field u.

Model with external field

4	$\frac{-1}{2 \sqrt{2}}$		$\frac{2+i}{2 \sqrt{2}}$		$\frac{-1}{2 \sqrt{2}}$		$\frac{1}{2 \sqrt{2}} i$
3		$\frac{-1}{2}$		$\frac{1+i}{2}$		$\frac{-1}{2} i$	
2			$\frac{-1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}} i$		
1				$-i$			
t	-2	-1	0	1	2	3	4

Values of $a\left(x, t, 1,1, u_{1}\right)$ in homogeneous field for small x and t.

Exact solution

Denote by $\delta_{2}(b)$ the remainder of b after division by 2 .

Proposition (F.O., 2022)

For each real $m \geq 0$ and integer $\xi, \eta \geq 0$ the following equalities hold:

$$
\begin{aligned}
& a_{1}\left(\xi-\eta+1, \xi+\eta+1, m, 1, u_{1}\right)= \\
& =(-1)^{\xi+1} \frac{m\left(1+m^{2}\right)^{\delta_{2}(\xi(\eta+1))}}{\left(1+m^{2}\right)^{\frac{\xi+\eta}{2}}} \sum_{j=0}^{\left\lfloor\frac{\xi}{2}\right\rfloor}\binom{\left\lfloor\frac{\xi}{2}\right\rfloor}{ j}\binom{\left\lfloor\frac{\eta-1}{2}\right\rfloor}{ j}\left(1-\left(1+m^{2}\right)^{2}\right)^{j} \\
& a_{2}\left(\xi-\eta+1, \xi+\eta+1, m, 1, u_{1}\right)= \\
& =\frac{(-1)^{\xi+1}}{\left(1+m^{2}\right)^{\frac{\xi+\eta}{2}}} \sum_{j=0}^{\left\lfloor\frac{\xi}{2}\right\rfloor}\left(\binom{\left\lfloor\frac{\eta}{2}\right\rfloor}{ j}\left(1+m^{2}\right)^{\delta_{2}(\xi \eta)}-\right. \\
& \left.-\binom{\left\lfloor\frac{\eta-1}{2}\right\rfloor}{ j}\left(1+m^{2}\right)^{\delta_{2}(\xi(\eta+1))}\right)\binom{\left\lfloor\frac{\xi}{2}\right\rfloor}{ j}\left(1-\left(1+m^{2}\right)^{2}\right)^{j} .
\end{aligned}
$$

Exact

solution in terms of Hypergeometric functions.

For integer a, b, c, where $b \leq 0$, the polynomial.

$$
{ }_{2} F_{1}(a, b ; c ; z)=1+\sum_{k=1}^{\infty} \prod_{l=0}^{k-1} \frac{(a+I)(b+I)}{(1+I)(c+I)} z^{k}
$$

is called Gauss Hypergeometric function.
Proposition (F.O., 2022)
Denote $z=1-\left(1+m^{2}\right)^{2}$. Then for each real $m \geq 0$ and integer $\xi, \eta \geq 0$ the following equalities hold:

$$
\begin{aligned}
& a_{1}\left(\xi-\eta+1, \xi+\eta+1, m, 1, u_{1}\right)= \\
& =(-1)^{\xi+1} m\left(1+m^{2}\right)^{-\frac{\xi+\eta}{2}+\delta_{2}((1+\eta) \xi)} \cdot{ }_{2} F_{1}\left(-\left\lfloor\frac{\eta-1}{2}\right\rfloor,-\left\lfloor\frac{\xi}{2}\right\rfloor ; 1 ; z\right) .
\end{aligned}
$$

Remark

There is a similar formula for $a_{2}\left(x, t, m, 1, u_{1}\right)$.

Known formula for the basic model

Theorem (Folklore)

For each real $m \geq 0$ and integer $\xi, \eta \geq 0$ the following equalities hold:

$$
\begin{aligned}
& a_{1}(\xi-\eta+1, \xi+\eta+1, m, 1)=m\left(1+m^{2}\right)^{-\frac{\xi+\eta}{2}} \cdot{ }_{2} F_{1}\left(-\xi, 1-\eta ; 1 ;-m^{2}\right) \\
& a_{2}(\xi-\eta+1, \xi+\eta+1, m, 1)=-\frac{\xi}{2} m^{2}\left(1+m^{2}\right)^{-\frac{\xi+\eta}{2}} \cdot{ }_{2} F_{1}\left(1-\xi, 1-\eta ; 2 ;-m^{2}\right)
\end{aligned}
$$

Continuum limit

Theorem (F.O., 2022)

Let u_{ε} be the homogeneous electromagnetic field. Then for each $m>0$ and $|x|<t$ we have:

$$
\begin{aligned}
& \lim _{\varepsilon \searrow 0} \frac{1}{2 \varepsilon} a_{1}\left(4 \varepsilon\left\lfloor\frac{x}{4 \varepsilon}\right\rfloor, 4 \varepsilon\left\lfloor\frac{t}{4 \varepsilon}\right\rfloor, m, \varepsilon, u_{\varepsilon}\right)=\frac{m}{2} J_{0}\left(m \sqrt{\frac{t^{2}-x^{2}}{2}}\right) \\
& \lim _{\varepsilon \searrow 0} \frac{1}{2 \varepsilon} a_{2}\left(4 \varepsilon\left\lfloor\frac{x}{4 \varepsilon}\right\rfloor, 4 \varepsilon\left\lfloor\frac{t}{4 \varepsilon}\right\rfloor, m, \varepsilon, u_{\varepsilon}\right)=-\frac{m}{\sqrt{2}} \sqrt{\frac{t+x}{t-x}} J_{1}\left(m \sqrt{\frac{t^{2}-x^{2}}{2}}\right) .
\end{aligned}
$$

Here $J_{0}(z):=\sum_{j=0}^{\infty}(-1)^{j} \frac{(z / 2)^{2 j}}{(j!)^{2}}$ and $J_{1}(z):=\sum_{j=0}^{\infty}(-1)^{j} \frac{(z / 2)^{2 j+1}}{(j!)(j+1)!}$ are Bessel functions of the first kind of orders 0 and 1 respectively.

Continuum limit

Continuum

limit in basic model and mass renormalization.

Theorem (Skopenkov-Ustinov 2022, Lvov 2022, Narlikar 1971)

Assume $m, \varepsilon>0,|x|<t$, where $x / 2 \varepsilon, t / 2 \varepsilon \in \mathbb{Z}$. Then

$$
\begin{aligned}
& \lim _{\varepsilon \searrow 0} \frac{1}{2 \varepsilon} a_{1}\left(2 \varepsilon\left\lfloor\frac{x}{2 \varepsilon}\right\rfloor, 2 \varepsilon\left\lfloor\frac{t}{2 \varepsilon}\right\rfloor, m, \varepsilon\right)=J_{0}\left(m \sqrt{t^{2}-x^{2}}\right) \\
& \lim _{\varepsilon \searrow 0} \frac{1}{2 \varepsilon} a_{2}\left(2 \varepsilon\left\lfloor\frac{x}{2 \varepsilon}\right\rfloor, 2 \varepsilon\left\lfloor\frac{t}{2 \varepsilon}\right\rfloor, m, \varepsilon\right)=\sqrt{\frac{t+x}{t-x}} J_{1}\left(m \sqrt{t^{2}-x^{2}}\right) .
\end{aligned}
$$

Remark

The relation between the arguments of the Bessel functions in these models is given by mass renormalization:

$$
m=\frac{m_{0}}{\sqrt{2}}
$$

where m is the mass in the model with the field, and m_{0} is the one in the model without field.

Large time limit

Large time limit

Theorem (F.O., 2022)

For each real $m, \varepsilon>0$ and each real v the following equality holds

$$
\lim _{\substack{t \rightarrow \infty \\ t \in \varepsilon \mathbb{Z}}} \sum_{\substack{x \leq v t \\ x \in \varepsilon \mathbb{Z}}} P\left(x, t, m, \varepsilon, u_{\varepsilon}\right)=F(v):= \begin{cases}0, & \text { if } v<-\frac{1}{1+m^{2} \varepsilon^{2}} ; \\ \frac{1}{\pi} \arccos \frac{1-\left(1+m^{2} \varepsilon^{2}\right)^{2} v}{\left(1+m^{2} \varepsilon^{2}\right)(1-v)}, & \text { if }|v| \leq \frac{1}{1+m^{2} \varepsilon^{2}} ; \\ 1, & \text { if } v>\frac{1}{1+m^{2} \varepsilon^{2}}\end{cases}
$$

Theorem (Grimmet-Janson-Scudo, 2004)

For each real $m, \varepsilon>0$ and each real v the following equality holds

$$
\lim _{\substack{t \rightarrow \infty \\ t \in \varepsilon \mathbb{Z}}} \sum_{\substack{x \leq v t \\ x \in \varepsilon \mathbb{Z}}} P(x, t, m, \varepsilon)=F(v):= \begin{cases}0, & \text { if } v<-\frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}} \\ \frac{1}{\pi} \arccos \frac{1-\left(1+m^{2} \varepsilon^{2}\right) v}{\sqrt{1+m^{2} \varepsilon^{2}(1-v)},}, & \text { if }|v| \leq \frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}} \\ 1, & \text { if } v>\frac{1}{\sqrt{1+m^{2} \varepsilon^{2}}}\end{cases}
$$

Remark

Here the relation between m_{0} and m is given by the formula $\left(1+m^{2} \varepsilon^{2}\right)^{2}=1+m_{0}^{2} \varepsilon^{2}$. However, tending ε to 0 we obtain exactly the relation from the continuum limit case.

Bibliography

Ambainis A., Bach E., Nayak A., Vishwanath A., Watrous J. One-dimensional quantum walks, Proc. of the 33rd Annual ACM Symposium on Theory of Computing (2001), 37-49.
B. Gaveau, L.S. Schulman, Dirac equation path integral: interpreting the Grassmann variables, II Nuovo Cimento D 11, 31 (1989) 31-51.

Grimmett G., Janson S. Scudo P. Weak limits for quantum random walks // Phys. Rev. E 69 (2004), 026119.

N. Konno, Quantum walks. In: U. Franz, M. Schurmann(eds) Quantum potential theory, Lect. Notes Math. 1954 Springer, Berlin, Heidelberg, 2008

J. Narlikar, Path amplitudes for Dirac particles, J. Indian Math. Society, 36 (1972), 9-32
F. Ozhegov, Feynman checkers: external field and asymptotic properties, arxiv:2209.00938

Skopenkov M. Ustinov A. Feynman checkers: towards algorithmic quantum theory, Russian Math. Surveys, 77:3 (2022), 73-160.

Venegas-Andraca S. Quantum walks: a comprehensive review // https://arxiv.org/abs/1201.4780

Thanks for your attention!

