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Informal definition

First idea: path 7→ complex number
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length = 1
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where t =
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Informal definition

Second idea: square 7→ complex number
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Informal definition

square 7→ complex number

vector of a square =
sum of vectors
of paths

Polina Zakorko Uniform approximation of the wave function by Airy function



Informal definition

square 7→ complex number

vector of a square =
sum of vectors
of paths

Polina Zakorko Uniform approximation of the wave function by Airy function



Informal definition

square 7→ complex number

vector of a square =
sum of vectors
of paths

Polina Zakorko Uniform approximation of the wave function by Airy function



Definition (R.Feynman, 1950s)

a(x , t) := 2(1−t)/2 i
∑
s

(−i)turns(s)

is the sum over all checker paths s from (0, 0) to (x , t) with the first step to (1, 1),
where turns(s) is the number of turns in s.

The length square of the resulting vector is the probability to find an electron in the
square (x , t), if it was emitted from (0, 0):

P(1, 3) = |a(1, 3)|2 = 1/2.
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Definition (R.Feynman, 1950s)

Wave function:
a(x , t) = 2(1−t)/2 i

∑
s

(−i)turns(s);

a1(x , t) := Re(a(x , t)), a2(x , t) := Im(a(x , t));

Probability to find an electron at (x , t), if it was emitted from (0, 0):

P(x , t) := |a(x , t)|2.
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Integral form of wave functions

Lemma (Fourier integral representation of the wave functions)

For every integer x and t such that x + t is odd we have

a1 (x , t + 1) =
(−1)(x−t+1)/2

2π

∫ π

−π

e itL(u,x/t)√
1 + cos2(u)

du;

for every integer x and t such that x + t is even we have

a2 (x + 1, t + 1) =
(−1)(x−t)/2

2π

∫ π

−π

(
1 +

cos u
√

1 + cos2 u

)
e itL(u,x/t)du,

where

L(u, v) := uv − arcsin

(
sin u
√

2

)
.
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L(u, v)

L(u, v) = uv − arcsin

(
sin u
√

2

)

’Looks like’ x3

3
+ yx

∂L

∂u
= v −

cos u
√

1 + cos2 u
⇒

∂L

∂u
> 0 for v >

1
√

2
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Airy function

Airy function:

Ai(λ) :=
1

π

∫ ∞
0

cos

(
λp +

p3

3

)
dp .
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Main Result: Uniform approximation

Theorem (Uniform approximation of the wave functions)

For every integer x and t such that |x | < t/
√

2 and x + t is odd we have

a1(x , t + 1) = (−1)
|x|−t+1

2

(
4θ(x/t)

1− 2(x/t)2

) 1
4
(

1

t

) 1
3

Ai
(
−θ(x/t)t

2
3

)
+ O

(
1

t

)
,

for every integer x and t such that |x | < t/
√

2 and x + t is even we have

a2(x+1, t+1) = (−1)
|x|−t

2

√
t + x

t − x

(
4θ(x/t)

1− 2(x/t)2

) 1
4
(

1

t

) 1
3

Ai
(
−θ(x/t)t

2
3

)
+O

(
1

t

)
,

where

θ(v) :=

(
3

2

(
−|v | arccos

(
|v |

√
1− v2

)
+ arccos

(
1

√
2− 2v2

)))2/3

.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
v

0.2

0.4

0.6

0.8

1.0

θ(v)
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Illustrations

-1000 -500 500 1000
x

-0.05

0.05

a2

Figure: The plot of a2(x, 1000) for x even is shown in black and the approximation is shown in
orange.
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Illustrations
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Figure: The plot of a1(x, 1000) for x even is shown in black and the approximation is shown in
orange.
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Theorem (Smooth change to cubic polynomial)

Let f : [−U,U]× [0,A]→ R be a real analytic function such that

1 f ′u (0, 0) = 0, f ′′uu(0, 0) = 0, f ′′′uuu(0, 0) 6= 0, f ′′uα(0, 0) 6= 0;

2 f (−u, α) = −f (u, α) for each u ∈ [−U,U] and α ∈ [0,A];

3 for each α ∈ (0,A] there are precisely two solutions ±u0(α) ∈ [−U,U] of the
equation f ′u (u, α) = 0, where u0(α) ∈ (0,U), and we have f ′′uu(u0(α), α) > 0;

4 for α = 0 there is only one solution u0(0) = 0 of the equation f ′u (u, α) = 0.

Then there exists an infinitely differentiable function q : [−U,U]× [0,A]→ R such
that q′u(u, α) > 0, q(−u, α) = −q(u, α) identically, and

f (u, α) =
q(u, α)3

3
− θ(α)q(u, α),

where

θ(α) =

(
−

3

2
f (u0(α), α)

)2/3

.

Moreover,

q(u0(α), α) = θ(α)1/2,

q′u(u0(α), α) = h(α) :=


f ′′uu(u0(α), α)1/2

(−12f (u0(α), α))1/6
, if 0 < α 6 A,

( 1
2
f ′′′uuu(0, 0))1/3, if α = 0.
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Generalization

Theorem (General uniform approximation by Airy function)

Let f : [−U,U]× [0,A]→ R be a real analytic function that satisfies conditions 1-4,
g ∈ C∞([−U,U]) be even function, and t ∈ R>0. Then for each α > 0∫ U

−U
g(u)e itf (u,α)du =

2π

t1/3

g(u0(α))

h(α)
Ai

(
−
(
−

3

2
f (u0(α), α) · t

)2/3
)

+ Of ,g

(
1

t

)
,

where u0(α) is defined in conditions 3 and 4, and h(α) is defined in Theorem above.
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Proof of general uniform approximation theorem

Here we follow [3, Theorem 2, Appendix A] First we integrate by substitution
q = q(u, α)

I =

∫ U

−U
g(u)e itf (u,α)du

=

∫ q(U,α)

−q(U,α)
g(u(q, α))

du(q, α)

dq
exp(it(q3/3− θ(α)q))dq

I = I1(t, α) + I2(t, α)

I1(t, α) :=
g(u0(α))

q′u(u0(α), α)

∫ q(U,α)

−q(U,α)
e it(q3/3−θ(α)q)dq,

I2(t, α) :=

∫ q(U,α)

−q(U,α)

(
g(u(q, α))u′q(q, α)−

g(u0(α))

q′u(u0(α), α)

)
e it(q3/3−θ(α)q)dq.

I1(t, α)→ main contribution ; I2(t, α) = Of ,g (1/t).
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Proof of general uniform approximation theorem

I1(t, α) :=
g(u0(α))

q′u(u0(α), α)

∫ q(U,α)

−q(U,α)
e it(q3/3−θ(α)q)dq.

Proposition

I1(t, α) =
g(u0(α))

h(α)

2π

t1/3
Ai

(
−
(
−

3

2
f (u0(α), α) · t

)2/3
)

+ Of ,g

(
1

t

)
.

Lemma

For each θ and Q > 0 such that Q2 > θ we have∣∣∣∣∫ ∞
Q

cos

((
q3

3
− θq

)
t

)
dq

∣∣∣∣ 6 2

t(Q2 − θ)
.

Proof of Lemma.

Integration by parts

cos

(
tq3

3
− θtq

)
=

2tq sin(tq3/3− θtq)

(tq2 − θt)2
+

d

dq

(
sin(tq3/3− θtq)

tq2 − θt

)
.
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For each θ and Q > 0 such that Q2 > θ we have∣∣∣∣∫ ∞
Q

cos

((
q3

3
− θq

)
t

)
dq

∣∣∣∣ 6 2

t(Q2 − θ)
.

Proof of Lemma.

Integration by parts

cos

(
tq3

3
− θtq

)
=

2tq sin(tq3/3− θtq)

(tq2 − θt)2
+

d

dq

(
sin(tq3/3− θtq)

tq2 − θt

)
.
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Proof of general uniform approximation theorem

I2(t, α) :=

∫ q(U,α)

−q(U,α)

(
g(u(q, α))u′q(q, α)−

g(u0(α))

q′u(u0(α), α)

)
︸ ︷︷ ︸

:=φ(q,α)

e it(q3/3−θ(α)q)dq.

Proposition

I2(t, α) = Of ,g

(
1

t

)
.

Proof of Proposition.

Use Hadamard’s lemma with parameter to prove the smoothness of
G(q, α) := φ(q, α)/(q2 − θ(α))

I2(t, α) :=

∫ q(U,α)

−q(U,α)
G(q, α)(q2 − θ(α))e it(q3/3−θ(α)q)dq,

then integration by parts.
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Theorem (Smooth change to cubic polynomial)

Let f : [−U,U]× [0,A]→ R be a real analytic function such that

1 f ′u (0, 0) = 0, f ′′uu(0, 0) = 0, f ′′′uuu(0, 0) 6= 0, f ′′uα(0, 0) 6= 0;

2 f (−u, α) = −f (u, α) for each u ∈ [−U,U] and α ∈ [0,A];

3 for each α ∈ (0,A] there are precisely two solutions ±u0(α) ∈ [−U,U] of the
equation f ′u (u, α) = 0, where u0(α) ∈ (0,U), and we have f ′′uu(u0(α), α) > 0;

4 for α = 0 there is only one solution u0(0) = 0 of the equation f ′u (u, α) = 0.

Then there exists an infinitely differentiable function q : [−U,U]× [0,A]→ R such
that q′u(u, α) > 0, q(−u, α) = −q(u, α) identically, and

f (u, α) =
q(u, α)3

3
− θ(α)q(u, α),

where

θ(α) =

(
−

3

2
f (u0(α), α)

)2/3

.

Moreover,

q(u0(α), α) = θ(α)1/2,

q′u(u0(α), α) = h(α) :=


f ′′uu(u0(α), α)1/2

(−12f (u0(α), α))1/6
, if 0 < α 6 A,

( 1
2
f ′′′uuu(0, 0))1/3, if α = 0.
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Proof of smooth change to cubic polynomial theorem

Let
F (u, q, α) := f (u, α)− (q3/3− θ(α)q).

Consider F (u, q, α) as the cubic polynomial Fuα(q) in q (with parameters u and α).
We choose an appropriate root q = q(u, α) of Fuα(q) for each
(u, α) ∈ [−U,U]× [0,A]:

q(u, α) :=


the minimal root of Fuα(q), if u ∈ [−U;−u0(α)],

the middle root of Fuα(q), if u ∈ (−u0(α); u0(α)),

the maximal root of Fuα(q), if u ∈ [u0(α),U].
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Proof of smooth change to cubic polynomial theorem

u ∈ [−U;−u0(α)] u ∈ [−U;−u0(α)] u = −u0(α)

u ∈ [−u0(α); u0(α)] u = u0(α) u ∈ [u0(α),U]

Figure: The choice of the root q of Fuα(q) for different u

(Blue lines are f (u, α) − (q3/3 − θ(α)q) = 0 for different u)
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Proof of smooth change to cubic polynomial theorem

Recall
F (u, q, α) = f (u, α)− (q3/3− θ(α)q).

We need to prove the smoothness of q(u, α). There are three types of points in
[−U,U]× [0,A]:

Case 1: f ′u (u, α) = 0, f ′′uu(u, α) = 0 — one point (u0(0), 0), apply Lemma on the next
slide.

Case 2: f ′u (u, α) = 0, f ′′uu(u, α) 6= 0 — non-isolated nondegenerate singular points;
apply the Morse lemma depending on a parameter (on the next slide).

Case 3: f ′u (u, α) 6= 0 — all other points; apply the implicit function theorem to
F (u, v , α).
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Case 1: f ′u (u, α) = 0, f ′′uu(u, α) = 0

Lemma 1 ([4, Ch. VI, Lemma 2.1])

Let f (u, α) be a function holomorphic in both variables for small |u| and |α| satisfying
condition 1 in Theorem. Then there is R > 0 and a function v(z) holomorphic for
|z| < R such that for 0 < |α| < R the equation f ′u (u, α) = 0 has precisely two
solutions in the region |u| < R, given by {u1(α), u2(α)} = {v(

√
α), v(−

√
α)}.

Lemma 2 ([4, Ch. VI, Lemma 2.2])

There exist functions A(α), B(α) holomorphic for small |α| such that

A(α) =
1

2
(f (u1(α), α) + f (u2(α), α)) ,

B(α)3 =

(
3

4
(f (u2(α), α)− f (u1(α), α))

)2

.

Lemma 3 ([4, Ch. VI, Lemma 2.3])

There exist R1, R2 > 0 and a function q(u, α), which is holomorphic for |u| < R1,
|α| < R2 and satisfies the equation

f (u, α) =
q(u, α)3

3
− B(α)q(u, α) + A(α).

Polina Zakorko Uniform approximation of the wave function by Airy function



Proof of smooth change to cubic polynomial theorem

Case 2: f ′u (u, α) = 0, f ′′uu(u, α) 6= 0

Lemma (Morse lemma with a parameter [4, Ch. II, Lemma 3.3])

Let S(r , α) be a real-valued function such that

1 S(r , α) ∈ C∞(U × V ), where U ⊂ Rn, V ⊂ Rk are neighbourhoods of r0, α0

respectively;

2 S ′r (r0, α) = 0 for each α ∈ V , and S ′r (r , α) 6= 0 for each r ∈ U\{r0}, α ∈ V ;

3 det S ′′rr (r0, α) 6= 0 for each α ∈ V .

Then there exist neighbourhoods V0, U0, W of the points α = α0, r = r0, y = 0
respectively, and a function r = Φ(y , α) such that for each α ∈ V0,
y = (y1, . . . , yn) ∈W we have Φ(y , α) ∈ U0 and

S(Φ(y , α), α) = S(r0, α) +
1

2

p∑
j=1

y2
j −

1

2

n∑
j=p+1

y2
j ,

where p is the number of positive eigenvalues of the matrix S ′′rr (r0, α0).

We apply the Morse lemma to the function

S(u, q, α) := F (u, q, α)− F ′u(u0, q0, α)u − F ′q(u0, q0, α)q

in a small neighbourhood of the nondegenerate singular point (u0, q0, α0).
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