
Contents

1 Abstract 3

2 Introduction 4

2.1 Basic Terms and Definitions . 4

2.2 Background . 6

2.3 Project goal . 7

2.4 Project objectives . 7

2.5 Allocation of tasks among teammates 8

3 Review comparative analysis of sources 8

3.1 QuickToken . 8

3.2 Brickken . 9

3.3 Summary table of competitors and related projects 9

4 Functional and non-functional requirements 10

4.1 Functional Requirements . 10

4.2 Non-Functional Requirements . 11

4.3 Software Interfaces . 11

5 Project implementation 12

5.1 Architecture . 12

5.2 Development of the website layout 16

5.3 Backend development . 20

5.3.1 Smart contract . 20

5.4 Frontend development . 23

5.4.1 Website layout . 23

6 Conclusion 28

6.1 Results . 28

1

6.2 Project perspectives . 28

6.3 Important Links . 29

7 Bibliography 30

2

1 Abstract

За последнее десятилетие криптовалюты и токенизация стали неотъемлемой

частью рынка, открывая революционные возможности для владения активами

и обмена ценностями. Токенизация позволяет оцифровать реальные активы,

способствуя повышению ликвидности, дробному владению и прозрачности. В то

же время криптовалюты произвели революцию в концепции цифровой валюты,

способствуя децентрализованным и безопасным транзакциям. Данный проект

направлен на разработку прототипа модели токенизации реальных финансовых

активов в виде токенов в сети блокчейн на примере QuickToken, открывая

возможности для повышения финансовой доступности и инноваций.

Ключевые слова: Криптовалюта, Блокчейн, Токенизация, Decentralized

finance (DeFi), Solana.

Over the past decade, cryptocurrencies and tokenization have become an integral

part of the financial market, opening up groundbreaking opportunities for asset

ownership and value exchange. Tokenization allows the digitization of real assets,

facilitating greater liquidity, fractional ownership and transparency. At the same

time, cryptocurrencies have revolutionized the concept of digital currency, facilitat-

ing decentralized and secure transactions. This project aims to develop a prototype

model for tokenization of real financial assets in the form of tokens on the blockchain

network, taking QuickToken as an example, unlocking new opportunities for in-

creased financial accessibility and innovation.

Keywords: Cryptocurrency, Blockchain, Tokenization, Decentralized finance (DeFi),

Solana.

3

2 Introduction

2.1 Basic Terms and Definitions

• Cryptocurrency - a digital currency, which is an alternative form of payment

created using encryption algorithms.

• Blockchain - an infrastructure processed on decentralised server cluster that

verify cryptocurrency transactions and maintain secured data about them.

• Token - a unit of digital currency or representation of value that exists on a

blockchain or distributed ledger, typically used for transactions and interac-

tions within a specific ecosystem or platform.

• Tokenization - the process of converting real-world assets into digital to-

kens that can be represented, recorded, and transferred on a blockchain or

distributed ledger.

• Solana - is a public 3-rd generation blockchain platform with smart contracts

functionality.

• Web-wallet - a self-custodial crypto wallet, that is a web browser extension

and supports transaction signing on website.

• Bank - a financial institution authorized by a government or regulatory body

to receive deposits, provide loans, and offer a wide range of financial services

to individuals, businesses, and governments.

• Holder - an individual, organization, or entity that owns and holds financial

assets, such as stocks, bonds, mutual funds, or other investment instruments,

with the intention of generating returns or profits over the long term.

4

• Asset - a resource that has economic value and the potential to generate future

benefits.

• Bond NFT - the tokenization of bonds using non-fungible tokens, and repre-

senting ownership and transfer of bonds digitally through NFTs on a blockchain

network.

• Portfolio Instance - a specific collection or combination of financial assets,

such as stocks, bonds, mutual funds, or other investment instruments.

• Tokenization Platform - a platform or service that specializes in tokeniza-

tion, providing tools and infrastructure for the creation, management, and

transfer of digital tokens on blockchain networks.

5

2.2 Background

As we progress toward a decentralised economy, new opportunities emerge. A num-

ber of central bank digital currency (CBDC) projects have been launched by central

banks. Physical products and non-fungible assets that are represented by tokens on

a blockchain are now included in digital business models, releasing billions of euros in

illiquid assets and generating new revenue streams. The introduction of tokenization

has significantly altered how we invest and raise money.

Tokenization is the process of creating blockchain-based tokens that may be ex-

changed, stored, and transferred online. These assets continue to exist "off-chain",

but their underlying tokens live on the blockchain, serve as a store of value, and

have all the rights associated with them. This idea is not brand-new. For instance,

tokenization is commonly used in "air miles" systems, which may be changed into

specific items, services, or trips. The same process is used with digital tokens.

Traditional illiquid assets can become more liquid and tradeable on secondary mar-

kets through fractional ownership, enabling a wider range of investors to engage in

the ecosystem. Assets that have been tokenized enable quicker transactions with

less administrative work. Many laborious manual operations can be automated and

optimised via the use of smart contracts, and the clearing and settlement procedures

may be made simpler and more effective.

The concept of tokenization opens up new opportunities for the financial industry

as it moves toward a decentralized economy. It provides increased liquidity, acces-

sibility and efficiency, setting the stage for innovative business models and broader

investor engagement. Through the use of blockchain technology, tokenization is fun-

damentally changing the way assets are represented, traded and managed, shaping

6

the future landscape of investment and capital allocation.

2.3 Project goal

Develop an application that prototypes the QuickToken model: allow investors, like

banks, to raise funds against standardized assets, like bonds, via blockchain. In order

for investors to manage the assets, a primary and secondary market for such tokens

is implemented. An NFT contract enables the investor who purchases it to make a

profit in the future, as specified in the terms of the contract.

2.4 Project objectives

1. Learning Vue.js and webpack: Acquire knowledge and proficiency in Vue.js, a

progressive JavaScript framework, and webpack, a module bundler, to build

the website.

2. Draw a website Concept/Template: design and outline the visual and struc-

tural aspects of the website using Figma application.

3. Create smart-contract architecture, establish website interaction with blockchain

define the architecture and structure of the smart contracts that will be de-

ployed on the blockchain.

4. Develop Solana smart-contract: implement the smart contract functionality

using the Solana blockchain, ensuring secure and efficient execution of trans-

actions and interactions.

5. Develop Website: utilize Vue.js and webpack to develop the website, integrat-

ing the designed concept/template and incorporating the necessary function-

alities to interact with the smart contract and blockchain.

7

6. Check and test the quality: conduct thorough testing and quality assurance

measures to identify and resolve any issues, ensuring the website’s functionality

and performance.

7. Prepare for presentation, possibly run on a remote server: prepare the project

for presentation, showcasing its features and functionalities. Additionally, con-

sider deploying the website on a remote server to make it accessible to users

beyond the local environment.

2.5 Allocation of tasks among teammates

Our team consisted of two members - Anna Gertsog and Grigory Zhitniy.

Anna was engaged in the design of the website layout and all its elements in Figma,

then made the website make-up using HTML and CSS markup languages and Vue.Js

framework to develop the user interface.

Grigorii was responsible for the engineering of the whole system, developed smart

contracts in the Rust language for Solana, built and deployed the site using Docker

as well as integrated Phantom wallet into the site.

3 Review comparative analysis of sources

3.1 QuickToken

The original project, unlike QuickToken, follows the same idea of being an interme-

diate between legal organisations and crypto-investors, presenting packed loans as

tokens into Ethereum blockchain. Unlike QuickToken we use the Solana Blockchain

that provides much cheaper and faster transactions than any Etherium compatible

blockchains. Solana has “closed” smart-contract code that provides stronger security.

8

Also we have managed to pack all data into blockchain, so our model is more trustful.

By leveraging Solana’s capabilities and offering a more cost-effective and secure so-

lution for bundled loan tokenization, our project effectively addresses the evolving

needs of the financial industry. We aim to facilitate the seamless integration of

blockchain technology into traditional finance, increasing efficiency and opening up

new opportunities for both legal entities and crypto-investors.

3.2 Brickken

Brickken also specializes in presenting various assets in the form of tokens on the

Ethereum blockchain. Using blockchain technology, they aim to provide greater liq-

uidity and accessibility to traditionally illiquid assets. Unlike some other blockchain

projects, Brickken does not rely on its own token as an intermediary between in-

vestors and borrowers.

This approach reduces risk for users because they are not required to buy or hold

a specific token to participate in the platform. Instead, Brickken’s model includes

a built-in mechanism to sell and return funds in a timely manner, all enabled by

blockchain. Brickken also emphasizes integration of its platform with wallets, apps,

centralized exchanges and trading venues.

3.3 Summary table of competitors and related projects

Upon reviewing the competitors of QuickToken, the model we seek to replicate, we

thoroughly examined eight other similar projects. Through comprehensive research

and analysis, we assessed the strengths and weaknesses of each platform. Quick-

Token stands out with its competitive commission rate of only 1%, making it an

appealing choice for users.

9

Additionally, QuickToken offers a wide range of investment options, ensuring diver-

sity and maximizing opportunities for investors. The platform boasts a high level of

liquidity, providing users with efficient and timely transactions. Furthermore, Quick-

Token utilizes blockchain technology, enhancing security and transparency. Notably,

QuickToken operates both as a peer-to-peer (P2P) and peer-to-business (P2B) plat-

form, catering to different investment needs.

These factors collectively contribute to the attractiveness and reliability of the project.

However, in our assessment, we believe that further lowering the commission rate

could attract an even larger customer base and foster increased customer acquisition.

4 Functional and non-functional requirements

4.1 Functional Requirements

• The system lets the Bank create a new Portfolio Instance, consisting of a list

of Assets.

10

• The system provides a built-in mint tool for Bond NFTs, each NFT keeps a

combination of fraction of Portfolio’s Assets. Combinations are set up by the

Bank.

• The system provides a built-in mechanism for Bond NFTs release via sales on

website.

• The system lets Holder to observe owned Bond NFTs and all available to buy

Bond NFTs on market, displaying included Assets.

• The system distributes returns from Bank funds according to loans paid off.

4.2 Non-Functional Requirements

• The system must work on the Solana Blockchain.

• The system must not use any other server logic other than blockchain and

must store all data in blockchain accounts.

• The system does not require any registration and does not use internal custo-

dial wallets for both Bank and Holder.

• The system uses web-wallets for transaction signing.

4.3 Software Interfaces

• To communicate with the system, users must use Chrome as the only way

to communicate with the system, making transactions with one of these web-

wallets: “Phantom”, ”Solfare”.

• Website and server interact via HTTPs 1.1 Solana RPC request.

11

5 Project implementation

5.1 Architecture

This section was done by Grigorii Zhitnii:

This diagram shows the relationships of the structures in a smart contract, each

structure is separately recorded in the Solana accounts as small pieces of memory.

The main structure is Portfolio, it includes a description of all included bonds and

their parameters, the number of purchased assets and their breakdown, as well as

the payout matrix. The Bond structure stores information about the filling of a

particular asset, and standard NFT implementations through the Metaplex library

were also used, each asset was represented as a unique NFT.

Figure 1: Smart-contracts structures

In Solana there is a concept of PDA - Program Derived Account, this feature

allows you to create and sign an account from the program, to get the program

address uses the native hashing algorithm - sha-256, as seeds use other accounts

and the program address. We used the scheme below to get the addresses, so the

12

description of the asset can be procedurally obtained from the address of the prodged

NFT, and the token storage account through the address of the portfolio.

Figure 2: Accounts PDA relation

In the following, we developed the sequences of interaction between the website

and the blockchain. Figure 3 shows the sequence of searching and displaying the

blockchain assets using only queries to the blockchain network, with a special em-

phasis on the caching of the resulting values.

As mentioned above, in Solana, data is stored in separate accounts and associated

with addresses. Solana, like the Rust language, follows the Resource Oriented ideol-

ogy, so complex account search queries similar to SQL queries are possible in Solana,

so implementation without a dedicated server is possible on this network. In order

to search for saleable assets, we use multiple queries, starting with a search for all

13

portfolios under sale, then the search for all NFTs owned by those portfolios.

Figure 3: Interaction sequences (1)

Figure 4 represents the search sequence of all portfolios created by the bank.

This is done by searching through all possible accounts with the Portfolio tag and

the owner’s address.

14

Figure 4: Interaction sequences (2)

Figure 5 illustrates the sequence of creating a portfolio, which is divided into 4

parts:

1. Creating a portfolio by adding all the information about the bank.

2. Entering information about each of the bonds used.

3. Minting NFTs under each of the assets.

4. The start of the portfolio action.

15

Figure 5: Interaction sequences (3)

5.2 Development of the website layout

This section was done by Anna Gertsog:

Since the beginning of the project, after discussing all the tasks and the outlined

plan with the supervisor and my teammate, I started to design the future website

using a special program for the interface development and prototyping - Figma.

Firstly I designed the landing page, using the official QuickToken website as a ref-

erence. On the navigation bar I added 2 buttons for switching to other pages - for

banks and for users, and they were duplicated in the center of the page. Also, I

placed a purple button to connect a cryptocurrency wallet - "Select Wallet".

16

Figure 6: Landing Page

Then I designed a page for creating a portfolio under the name Query, in which

the user enters a description of his bank, adds a list of bonds and specifies the division

of bonds between different NFTs.

Figure 7: Query

To fill out the matrix of redeemed bonds, I created another page with a repeating

design.

17

Figure 8: Payment Query

The next page presents the marketplace of our NFTs, I have generated 10 icons

to distinguish the asset cards, which are randomly allocated between them. For each

of the NFTs, we show information about the bank, a list of included bonds, and

calculate the value and the rate of the asset.

Figure 9: NFT Pool

18

The same elements were used for the user’s wallet, only now after the bank

has deposited money for the bonds, the paid positions will be highlighted and the

resulting value will be recalculated.

Figure 10: User pocket

For the bank portfolio, the same idea of random cards was used.

Figure 11: Liabilities

19

5.3 Backend development

5.3.1 Smart contract

This section was done by Grigorii Zhitnii:

To implement the idea, it was decided to use Solana’s native library instead of the

Anchor library or its substitutes, since the main work is done with custom states,

for languages Rust over C++ was chosen as the most used. From the sequences

presented, these instructions were highlighted:

Figure 12: Smart contract instructions

Based on the architecture we proposed above, the standard states have been

implemented, and the portfolio characterizes all information about the portfolio,

including its status, period, and stores links to the token repository and owner.

20

Figure 13: Portfolio state

The Asset stores a link to the portfolio, to the NFT address to which it belongs,

and a list of bond numbers, with no duplicate information about the bonds.

21

Figure 14: Asset state

For the release of NFTs we have written a separate functionality, the NFT format

fulfills the Metaplex Metadata V3 standard, which was the most relevant at the stage

of development. In addition to the recorded data in the blockchain, the standard

requires metadata in json format and pictures placed on external sources, we were

able to use Git as the storage, which allows you to change the parameters in real-time.

Figure 15: Metadata initialization

22

5.4 Frontend development

This section was done by Anna Gertsog:

5.4.1 Website layout

The website was developed using HTML and CSS, the two main and most popular

languages for creating web pages. HTML is primarily used to structure and con-

tent of the page, defining various elements such as headings, paragraphs, images and

links. CSS is used to design and style elements, allowing you to specify colors, fonts,

element placement, and other visual attributes.

Also in the process of developing our site, I decided to use the powerful Bootstrap li-

brary to improve its navigation, page layout, and overall user experience. Bootstrap

is a popular framework that offers a wide range of pre-designed components, styles,

and a responsive grid system. It allows developers to quickly and efficiently create

visually appealing and mobile-friendly web pages.

The utilization of Bootstrap’s responsive grid system proved instrumental in crafting

a flexible and adaptable layout for our website. By leveraging the intuitive row and

column structure provided by Bootstrap’s grid classes, we ensured that our content

seamlessly adjusted to various screen sizes and device types. This level of respon-

siveness is crucial in today’s digital landscape, as users access websites through a

multitude of devices. Additionally, Bootstrap equipped us with an array of CSS

styling options and convenient classes, streamlining the customization process and

enabling us to enhance the visual presentation of elements without resorting to com-

plex CSS rules.

Also, I integrated the Vue router into our website development to optimize navi-

23

gation and enhance user experience. The Vue router allows us to define routes for

each page, enabling users to easily access specific content through URLs or navigation

menus. Its dynamic routing capabilities enable us to load and display content based

on user interactions or conditions. Additionally, the Vue router supports nested

routes, improving the organization and scalability of our website’s structure.

Figure 16: Router elements

We implement the base page in the App.vue component, where we define the

main navigation menu and implement injections for individual pages. In the App.vue

component, we also implement common functionality that applies to all pages:

• Wallet Verification: to implement wallet verification and validation of the

user’s wallet to ensure the safety and validity of their actions.

• Signing and sending transactions: to enable the user to sign and send trans-

actions through our platform.

Figure 17: App.vue component

24

In terms of the main components of the page, we can distinguish 6 of them:

1. NFT card: it displays relevant information such as the token’s image, which

is randomly generated.

Figure 18: NFT card

2. Submit button: this component allows users to submit their actions or trans-

actions.

Figure 19: Submit button

3. Asset description component: this component provides detailed informa-

tion about a specific asset or NFT, such as the name of the bank and its brief

description, information about assets, total amount, rate of interest and time

of expiration.

25

Figure 20: Asset description component

4. Navigation bar: the navigation bar is a fundamental component that fa-

cilitates easy navigation throughout the application. In this case here are di-

rections to Liabilities, Query, User and the button to click on the wallet button.

Figure 21: Navigation bar

5. Input field: which is used to capture user input, such as text, numbers, or

other data, for instance, the information on Figure 20.

Figure 22: Input field

26

6. Load pop-up: the load pop-up is a user interface element that appears when

the application is processing data or performing an action that requires some

time.

Figure 23: Load pop-up

In conclusion, the frontend development was the crucial stage of our project, where

we used modern technologies and tools such as HTML, CSS, Vue.js and Bootstrap to

create an interactive and user-friendly UI. We successfully implemented functionality

that provided navigation, interaction with blockchain, display and interaction with

NFT, as well as overall application logic.

27

6 Conclusion

6.1 Results

The application for tokenization of fiat financial assets was completely developed,

prepared and deployed on a server. Our application is compatible not only with

bonds but also with all financial instruments with a final maturity date. The po-

tential clients of our application will be financial organizations of SPV - Special

Purpose Vehicle direction, which want to expand into cryptocurrencies, and from

the end-stakeholders side - physical and legal investors, who want to use liquidity

and convenience of cryptocurrencies, but do not want to bear its risk.

6.2 Project perspectives

To sum up the current results, we can add about the future and prospects of our

project. Our project anticipates many options for developing its capabilities and

proposals. Based on the current structure, the project aims to revolutionize the way

digital assets are managed and traded by introducing a number of transformative

features and capabilities.

A key aspect of the future roadmap of the project is the integration of wallets,

given the importance of secure and convenient solutions for such an area, the project

plans to integrate with popular cryptocurrency wallets. In addition, the project’s

near-term prospects include the development of a mobile application on IOS and

Android platforms, which will provide users with easier access to a number of fea-

tures and functions, including portfolio management, asset tracking and optimized

trading capabilities.

Moreover, the project plans to provide NFT registration on various trading plat-

28

forms, and aims to connect with centralized exchanges and trading venues, providing

users with enhanced liquidity and trading capabilities. This strategic integration will

allow tokens to trade seamlessly on established platforms, leveraging the liquidity

and user base of these centralized exchanges to maximize trading efficiency and ac-

cessibility.

Finally, the project may include the creation of its own decentralized exchange which

will facilitate an unbiased and transparent environment for P2P token trading, allow-

ing users to retain full control over their assets and opening up a variety of trading

opportunities.

6.3 Important Links

• GitHub Repository: https://github.com/Zarve8/QuickToken

• Our website: https://www.zarve.xyz/

• Docker: https://hub.docker.com/repository/docker/zarve1/quick_website

29

7 Bibliography

References

[1] Metaplex docs | nft standard. URL: https://docs.metaplex.com/.

[2] Rust documentation. URL: https://doc.rust-lang.org/.

[3] Solana documentation. URL: https://docs.solana.com/.

[4] Brickken. Official website. URL: https://brickken.com/consultation/.

[5] Gans J. S. Catalini, C. Some simple economics of the blockchain. 2016.

[6] Phantom. The crypto wallet for tokens. URL: https://phantom.app/.

[7] QuickToken. Official website. URL: https://quicktoken.org.

[8] Islam M. R. Rahman, M. R. An improved tokenization model for nft trading

on solana blockchain. 2022.

[9] Nugroho Y. A. Handayani P. W. Rizqullah, R. Asset tokenization on solana

blockchain network: A case study in the real estate sector. 2022.

[10] Solana. Official website. URL: https://solana.com/ecosystem.

[11] Solfare. A secure and powerful. solana wallet. URL: https://solflare.com/.

[12] TechTarget. Official website. URL: https://www.techtarget.com.

30

https://docs.metaplex.com/
https://doc.rust-lang.org/
https://docs.solana.com/
https://brickken.com/consultation/
https://phantom.app/
https://quicktoken.org
https://solana.com/ecosystem
https://solflare.com/
https://www.techtarget.com

	Abstract
	Introduction
	Basic Terms and Definitions
	Background
	Project goal
	Project objectives
	Allocation of tasks among teammates

	Review comparative analysis of sources
	QuickToken
	Brickken
	Summary table of competitors and related projects

	Functional and non-functional requirements
	Functional Requirements
	Non-Functional Requirements
	Software Interfaces

	Project implementation
	Architecture
	Development of the website layout
	Backend development
	Smart contract

	Frontend development
	Website layout

	Conclusion
	Results
	Project perspectives
	Important Links

	Bibliography

