
2

Abstract
Almost every company requires hardware resources to perform necessary calculations.
Nowadays, many companies suffer unnecessary losses for the reason that this hardware is used
irrationally. For instance, a company might use more servers or buy more powerful equipment
than it actually needs to perform the operations which the company focuses on. Our coursework
project focuses on assisting the company with the optimization of purchases by obtaining the
company’s data using the queries to the company’s time series database, reviewing the data
and adjusting it for suitable visualisation and model building. After that, we make the
visualisation and build the machine learning model predicting the future values for the server
resources usage and clustering the servers based on the CPU, RAM and disk space usage.
Basic Terms and Definitions

● Server – a computer system or software application that provides functionality to other
software or hardware components, often known as "clients." Hosting websites, data
management, printing, emailing, and serving as a hub for the delivery of software and
updates are just a few of the many functions that servers can provide.

● Server load – amount of work a server is performing at any one moment. The amount
of CPU, memory, and disc space being utilised, together with the number of requests
being handled by the server, can all be used to measure it. Because a high server load
might result in sluggish performance and prolonged user response times, it is essential
to monitor and manage server load to maintain ideal performance and availability.

● Load balancing – a technique in computer networking for distributing workloads
equitably over a number of servers, network connections, CPUs, or other resources. Its
goal is to avoid overloading any one resource with work, which can improve system
responsiveness, performance, and dependability. Load balancing algorithms can be
used to determine which resource to assign each incoming request to based on factors
such as the current load on each resource, the response time, and the number of requests
already being handled.

● Figma – a powerful cloud-based design platform. Vector networks, frames, and
components are just a few of the design capabilities and tools offered by Figma.

3

Prototypes can also have interactivity and animations added to them. The real-time
collaboration features of Figma, which enable many teammembers to work on a project
concurrently and view each other's modifications in real-time, are among its main
advantages.

● Tableau [1] – a modern Data Analytics and Business Intelligence platform. It allows
users to create interactive and dynamic visualisations, dashboards, and reports with
real-time analytics and quick responsiveness from various data sources. It provides
easy access to insights and helps businesses make data-driven decisions.

● Kibana – a tool for data exploration and visualisation. It offers a simple user interface
for developing and disseminating interactive dashboards, graphs, and charts based on
Elasticsearch data. It also has machine learning capabilities, saved searches,
visualisations, and other features that make it an effective tool for data analysis and
discovery.

● Grafana – an open-source platform for data monitoring, analysis, and visualisation. It
offers a unified platform for evaluating metrics, logs, and traces from diverse sources,
such as databases, cloud services, and IoT (Internet of Things) gadgets. Grafana offers
a variety of visualisation choices and makes it simple to create, examine, and share
dynamic and configurable dashboards and alerts.

● Prometheus – a popular open-source time-series database and monitoring tool. It is
designed to collect, store, and query metrics from various sources, such as cloud-based
infrastructure, containers, and microservices. Prometheus provides a flexible and
scalable solution for gathering, processing, and alerting on time-series data, making it
a popular choice for monitoring dynamic and globally distributed systems. Prometheus
offers a powerful query language called PromQL for working with time-series data.

4

Table of Contents
Abstract..2
Basic Terms and Definitions..2
Table of Contents..4
1. Introduction...6

1.1. Goal of the Project..6
1.2. Tasks...6
1.3. Roles of the Team Members...7

2. Description of Functional and Non-Functional Requirements...................7
2.1. Functional Requirements..7
2.2. Non-Functional Requirements..8

3. Solution Architecture ... 8
4. Data Collection and Processing...9

4.1. Discussing Prometheus Framework ... 9
4.2. Discussing Existing Visualisation Approaches......................................10
4.3. Discussing Metrics and Queries ...10
4.4. Discussing Data Problems..12
4.5. Discussing Results..12

5. Normalisation and Reconstruction of Time-Series Data...........................13
5.1. Data Normalisation...13
5.2. Reconstruction of Time-Series Data...14
5.2.1. Existing Solutions..14
5.2.2. Proposed Solution..15
5.2.3. Implementation..17
5.2.4. Testing ...17
5.2.5. Results..18
5.2.6. Conclusion and Prospects for Future Work...18

6. Machine Learning Models ...19
6.1. Data Preprocessing, EDA...19
6.2. Data Clusterization ...22
6.3. Building models to make predictions...25
6.4. Summary...26

7. Visualisation..26
7.1. Prototype Creation..27
7.2. Visualisations in Kibana and Grafana ..27

5

7.3. Visualisations in Tableau..28
7.4. Direct Connection between Tableau and Jupyter Notebook..................30

8. Conclusion...32
8.1. Future Improvements..32

Appendixes .. 33
Appendix A. Figma Prototype Pages...33
Appendix B. Tableau Dashboards...36

References..39

6

1. Introduction
Recently, the availability of computational resources has drastically increased. As a result,
both private users and large institutions go more and more greedy for computer power.
Nevertheless, as the number of servers grows, the costs of further horizontal scaling and
maintenance become significant, while the reasons for such an expansion often lie in the
irrational use of the existing resources. Efforts have been made by corporations to analyse the
data on server usage and optimise the distribution of resources between the systems and the
employees. However, in order for the rationalisation not to affect the company’s performance,
one should take into account the growth of server load over time. There are various approaches
to the problem of predicting the need for computational resources, from basic machine learning
approaches (linear predicting models) to more advanced techniques involving RL. For complex
analysis, it is crucial to collect statistics on each important resource in the machine: CPU,
RAM, and disk storage.

1.1. Goal of the Project
This project aims to evaluate the usage of physical servers in the customer’s (JSC “NSPK”)
network, visualise the data and develop machine learning models to identify common patterns
of server usage and predict the company’s need for computational resources in the future.

1.2. Tasks
● Study and compare the existing metrics evaluating the performance of a server.
● Study the analytic tools available in the company (Grafana, Prometheus, Tableau, etc.).

Determine their relevance in the context of the server load analysis.
● Collect the data from the company’s servers.
● Prepare the data for analysis: normalise it and impute the missing values.
● Develop a ML model to infer the future demand for computational resources from the

current usage of physical servers.
● Develop a ML model to cluster the servers and find common patterns of their usage.
● Visualise and interpret the collected data and the analytic results.

7

1.3. Roles of the Team Members
● Timofey Sluev: research on the existing approaches to the optimisation of server usage,

selection of relevant data categories, collecting metrics from the servers.
● Konstantin Shashkov: development of the system architecture, data preprocessing:

normalisation and imputation.
● Gregory Chebotarev: ML-based analysis: clustering of servers according to usage

patterns and prediction of future demand for computational power.
● Daria Lapko: design, prototyping and implementation of a solution to visualise server

metrics and analytic results.

2. Description of Functional and Non-Functional
Requirements
2.1. Functional Requirements

1. The application is expected to collect metrics on the usage of physical resources (e.g.,
CPU, RAM) from the company’s servers or a dedicated database.

2. The application is expected to aggregate the data from different teams across the
company and its subdivisions to present an overall picture of server usage.

3. The application is expected to visualise the historical data of server usage and aggregate
metrics.

4. The application is expected to cluster the company’s servers according to determined
usage patterns.

5. The application is expected to forecast the future usage of servers.
6. The application is expected to visualise the results of ML analysis (clustering and

prediction).

2.2. Non-Functional Requirements
1. The visualisations provided by the application are expected to be interactive.

8

2. The application is expected to normalise and impute the collected data before analysing
it.

3. The application is expected to satisfy the corporate standard of availability for business-
critical systems.

4. The application is expected to be horizontally scalable.
5. The application is expected to be universally employable given similar infrastructure

(availability of similar data collection, storage, processing and visualisation tools).
3. Solution Architecture
In order for the service to function well, all its parts should be properly integrated and tested.
Building an efficient architecture is as important as picking the data correctly and tuning the
model. Failing to do so may result in critical issues when the services are integrated, from
reduced performance to data loss or corruption, which are likely to affect the results of the
analysis to a great extent.
As the application operates, the data passes through 4 main stages of processing:

1. Raw data collection: a dedicated tool takes input metrics from the servers as they
operate and store it for future use. In the case of our application, Prometheus was chosen
by the company as such a monitoring system. From there, the data is retrieved with a
dedicated query language (PromQL).

2. Data preprocessing is the stage which ensures the quality of the obtained data. This
can be done either at the beginning, or the model’s script, or in a separate utility. Since
some preprocessed data may be used for visualisation and cached to optimise the
analysis in the future, the option of a separate script is preferable.

3. Modelling and prediction is when the ML comes into play. The preprocessed data is
read from the storage and used to train, test and further use the model. Because the data
structure is consistent across all three stages, so is the retrieval process. When the model
finishes working, the original data enriched with its output is stored for later use.

4. Visualisation may require the outputs of both preprocessing and analysis. It reads the
necessary data and presents it graphically. This is the ultimate output gate of our system.

9

Diagram 1 presents the described architecture schematically.

Diagram 1. Proposed Architecture of the Application.

4. Data Collection and Processing
4.1. Discussing Prometheus Framework
The data was extracted using Prometheus time series database and PromQL query language
for writing the queries to extract the data. As a part of the project, we conducted a comparison
of different time-series databases and studied the concept of a database itself and conducted a
comparison of different time-series database models (InfluxDB, Prometheus, etc.) and are able
to make several arguments why Prometheus TSDB is the most promising choice of a database
in our situation. The concept of a time-series database lies in the fact that a lot of data is stored
using key-value pairs, where the key is the timestamp of the observed value. The convenience
of this approach to storing the data is that the timestamps are unique. That is why a lot of
NoSQL approaches to storing the time-series databases are now widely discussed. The main
benefit of PromQL (in comparison, for example, with InfluxDB) lies behind the fact that
Prometheus has its own Python client library, which allows us to write the queries conveniently

10

in a small Python script. It also helps us to quickly collect the raw data from various sources
(disk, cpu, memory) to a single CSV or JSON file. This makes the further work with this data
(analysis, visualisation and user interface creation, statistical model building) much easier and
helps to save time by avoiding the use of external instruments.
4.2. Discussing Existing Visualisation Approaches
Another important framework we are going to talk about is Grafana. In industrial software
engineering, time series visualisation is often conducted through transmitting the data to
Kibana or Grafana, where the data visualisation is done on the latter side. With a little more
details on these two frameworks in the corresponding part of the report, Grafana is a fork of
Kibana which extends the possibilities of the data illustrations. One example of this extension
lies beyond the fact that Kibana only accepts the data from the Elasticsearch (in its own data
format), which would require unnecessary conversion of data. On the other hand, Grafana can
read the data directly from the Prometheus database (as a Prometheus query accepted by
Grafana). For these reasons we used Grafana, Prometheus queries and Python scripts to review,
gather, and extract the data from the company servers.
Let us now focus on the data we are extracting and review the queries which we use to gather
the data and metrics which we obtain:
4.3. Discussing Metrics and Queries

1. The first data source we are going to use is the memory usage. By memory here, we
refer to random access memory, or RAM. The computer uses it to immediately access
and retrieve the information for the computations it performs. It is physically stored in
microchips, which require expensive materials to produce. RAM is hence one of the
most expensive parts of the server, and optimising the memory usage shall rationalise
the resource allocation of the company, therefore cutting costs, resulting in better
economic efficiency. To monitor the RAM usage and further build a machine learning
model we decided to use the ratio of the available memory to the total memory capacity
of the corresponding server. To extract the data, we made a dataframe with the
corresponding server, team and the server memory usage for the past 30 days (including
today). The values are initially (after receiving the PromQL response) in the .json
format, which we convert to csv by using pd.json_normalize(). The memory values in

11

each day are the ratio of daily averages, which we offset for the past values by the
corresponding number of days (up to 30). The script used for obtaining the values for
the last day can be observed on Fig. 1. The script for offset values can be observed on
Fig. 2

2. Another important data that we are going to consider is the CPU usage. The CPU
includes all the circuits which execute the commands we give to the applications, so all
the calculations are done in the CPU. In our project, we made the queries which get the
average time that the CPU spent not in the idle mode for the last 1 day (in percentage
points), then offset this value for every day in the last 30 days, and obtained the data
frame for the CPU workload.

3. Last but not least, we have to work on the optimization of disk usage. Here, we refer to
disk space as to available permanent computer storage. Unlike RAM, it requires more
time to access the information, but has a far larger capacity and does not erase the data
when the server is turned off. All the operating system and other applications files are
stored on disk. In our script, for the storage data the query calculates and outputs the
ratio of the number of bytes available (free) in the storage to the total possible storage
capacity for this hardware (also in bytes). We paid close attention to the filesystem type
that the server has and specified the mounting point of the disk. In the same manner,
we specify the Prometheus target URL, generate the request, receive the response and
convert the data to the .csv format. Note that after receiving the final data, we group it
by servers and add the obtained value to the corresponding server.

4.4. Discussing Data Problems
After collecting the data, we noticed that certain servers contain null values in certain fields.
We also noticed while doing the intermediate data analysis for the past 7 days that there are no
null fields. This occurs due to the fact that some teams did not set up the Prometheus database
to store the data for the past 30 days, but the 7 day storage was set up for all teams.

12

Figure 1. The memory usage for today.

Figure 2. The memory usage for the past N days.
4.5. Discussing Results
Overall, we see that the available memory differs among teams and servers significantly, with
some teams often having less than 10% available memory on average, while others have a lot
more than 50% RAM usage. It is a clear sign of misuse of the available memory, which might
lead to higher costs for the company and irrational budget balance. One of the ways to address
this issue is looking at the number and power of the servers and redistributing them in a way
which makes the resource utilisation closer to the medium value (around some fixed percentage
average RAMworkload). As for the CPU usage, the values are far less critical and usually tend
to be around 0 - 10%. However, it doesn’t mean that we can let up on optimising it. This should
also be addressed, as usually CPU is the most expensive part of the server, hence a large amount
of resources can be saved by optimising the purchases of CPU. Disk usage also varies between
teams significantly, and this time, unlike in the case of RAM and CPU usage, the average is
more likely to be above 50%, sometimes exceeding 90% space used, which suggests that here
we are unlikely to really cut on the disk hardware purchases. However, the storage might still
be optimised in order to allocate additional disk space and/or notify the management prior to

13

the moment when new disk purchases shall be required (which we shall discuss later in our
machine learning modelling section).

5. Normalisation and Reconstruction of Time-Series
Data
To ensure the accuracy and interpretability of analysis, complete and quality data should be
considered. Unfortunately, in real life, collecting such a dataset is barely possible. Although
Prometheus is a highly-automate tool collecting metrics from computers, it is configured and
maintained by people. Therefore, one should bear in mind the possible consequences of human
factor on the quality of the data. In the company, there are many teams of developers, each
administrating their own servers. The settings for Prometheus are chosen and implemented by
the product team and the responsible DevOps engineer(s). As a result, not only is the resultant
data likely to be nonuniform, it also may happen to be inadequate at times. In this work, we
decided not to dive deep into interaction between Prometheus and the physical servers, mostly
relying on the data collected by the product teams and the CI/CD department. To prepare it for
future analysis, I addressed the problems of normalisation and reconstruction that I am going
to discuss further.
5.1. Data Normalisation
As I mentioned above, Prometheus is set up by people, and people tend to make mistakes.
Before proceeding to inference, it is crucial to verify the adequacy of collected data. Since all
three metrics considered in this work are measured in percentages, their values should fall
between 0 and 100. One way to deal with the data points lying outside of these bounds is to
treat them as nulls and apply one of the reconstruction techniques suggested below. Another
approach is to set them equal to the closest boundary values (either 0 or 100). Having obtained
the data, we observed high-magnitude negative as outliers. Since there was no reasonable
interpretation for such values, and assuming the corresponding cells to contain zeros was
counter-realistic given the data around, I decided to treat them as missing values.
5.2. Reconstruction of Time-Series Data
A more complicated problem to solve was the reconstruction of missing values. The issue of
incomplete data arise since the tracking period for Prometheus metrics varies from team to

14

team. As a result, large blocks of data happened to be empty. One could have taken a
straightforward approach and built the analysis on the longest period, in which complete data
is available. Unfortunately, the shortest record we encountered was kept for one week only,
which is not enough to make any insightful conclusions on the dynamics of server usage.
Moreover, the project is intended to be scalable and suitable for regular analysis rather than a
one-time glance at the data. Clearly, this requires the application to be stable in case of any
changes in record timing. Hence, we decided to choose the period of analysis as an optimal
trade-off between insightfulness and data availability. After a series of discussions, we agreed
to use the observations within 30 calendar days back from the sampling date. This brought me
to the task of reconstructing the missing values in the obtained dataset, were a few teams miss
several weeks of record. Conventional methods like replacing NaNs with mean, mode or
median seem ed insufficient for filling entire sections of a dataframe. Aiming to improve the
quality of future analysis, I decided to address this issue with machine learning.
5.2.1. Existing Solutions
It is worth mentioning that there have already been attempts to apply methods of machine
learning to multivariate data imputation. The sklearn.impute module suggests [2] two ready-
to-use ML-based algorithms capable of reconstructing several dimensions of missing values in
a dataframe.
The first option is the IterativeImputer class inspired by the Multivariate Imputation by
Chained Equations algorithm, which was proposed in 2011 by Stef van Buuren and Karin
Groothuis-Oudshoorn [3]. In simple terms, it iteratively regresses every feature on the others
using the known data in order to later predict the missing values. Further, it may reiterate
through the data frame for a specified number of times to re-impute it employing the results of
the previous step. That way, it is expected to improve the accuracy of its estimation. The class
allows one to specify the desired estimator for the regression [4]. By default, it uses the
BayesianRidge model [4,5].
An alternative approach is proposed in the KNNImputer class, which is based on the k-Nearest
Neighbours algorithm [6]. The missing value is filled with an average or a distance-weighted
average of k nearest neighbours, where k is a model parameter. By default, the module uses
nan_euclidean_distances [7] as the metric for finding neighbours. One may design their own
metric if they wish to.

15

A clear drawback of both these solutions in the context of our project is the fact that they use
the entire dataframe for imputation and do not take into account the predefined restrictions of
the data. Firstly, the data frame consists of 3 different sections each representing a dedicated
metric. Although there might be some correlation between the load of CPU, disk, and memory,
it would be naive to assume a relationship between them. Given the various factors affecting
these metrics (e.g. available physical resources, specific use of the server), one could easily
find a counterexample for such a conjecture. Secondly, neither algorithm is intended for time-
series data. For instance, it is natural to consider possible autocorrelation and seasonality.
Generally, close-in-time observations of a similar metric on the same server appear to be the
most suitable regressors for a missing value. This conclusion brought me to the idea of
constructing my own data-specific autoregressive model.
5.2.2. Proposed Solution
Following the discussion above, I came up with a simple yet efficient solution for
reconstructing time-series server usage data. The proposed algorithm is a modification of the
classic AR model defined as follows [8]:

𝑋𝑡 = 𝛼0 +∑𝑛
𝑖=1 𝑎 𝑖𝑋 𝑡−𝑖+ 𝜖𝑡 (1)

In (1),𝑋𝑡 stands for the value of the variable𝑋 at time 𝑡, 𝑛 is the order of the model (i.e. number
of past observations used for predictions), 𝛼0...𝛼𝑛 are the coefficients assigned to the
corresponding regressors, and 𝜖𝑡 is a stationary white noise disturbance term at time 𝑡. This
model is typically used to regress the future values of a time series on past observations.
The problem of data reconstruction requires a slightly different perspective on time-series
inference. Instead of predicting the future values, I needed to reconstruct missing records in
the past. To do so, I reformatted equation (1) to estimate older values based on more recent
observations and obtained the following:

𝑋𝑡 = 𝛼0 +∑𝑛
𝑖=1 𝑎 𝑖𝑋 𝑡+𝑖+ 𝜖𝑡 (2)

Next I had to choose the parameters of the model. Since only monthly data was considered,
which is a pretty short term, I assumed the metric to be stationary over time. The only seasonal
patterns that one could have observed on such a time horizon are weekly trends. Having that in
mind, I decided to set 𝑛 = 7. An AR(7) model regressed on a week of observations allows one

16

to capture the similarity of data points both on the neighbouring dates and the dates
corresponding to the same weekdays. Moreover, 7 is the maximum number of regressors, for
which I had a complete future record available at any data point. For simplicity of
interpretation, I assumed the constant term 𝛼0 = 0, although the impact of the constant term on
the performance of the model may be an important topic for future research. Finally, I defined
𝑋𝑡 as the observation of a particular metric (CPU, RAM, or disk usage) on a particular server
on day 𝑡. To estimate the coefficients 𝛼1...𝛼7, I chose the classic OLS estimator [9]. Further, it
may be interesting to experiment with different regression estimators and possibly improve the
model's accuracy.
5.2.3. Implementation
To train the model, I selected a subset of the data, which contained the servers with a complete
month-long record only. Having done a 1:3 train-test split, I constructed a separate training
dataframe for every metric (3 in total). For every metric observation 𝑋−7...𝑋−29 of a server 𝑋,
I constructed the following table:
Table 1. Structure of the training data.

7 6 5 4 3 2 1 Target
X[0] X[-1] X[-2] X[-3] X[-4] X[-5] X[-6] X[-7]
X[-1] X[-2] X[-3] X[-4] X[-5] X[-6] X[-7] X[-8]
… … … … … … … …

X[-22] X[-23] X[-24] X[-25] X[-26] X[-27] X[-28] X[-29]
Given 𝛼0 = 0 and 𝑛 = 7, I obtained the following model to train:

𝑋𝑡 =∑7
𝑖=1 𝑎 𝑖𝑋 𝑡+𝑖+ 𝜖𝑡 (3)

For every metric (CPU, RAM, and disk), I fit a dedicated model on the data described in Table
1. To estimate the regression coefficients, I used the OLS estimator from the statsmodels
package [10].
To reconstruct the lost data, I iteratively estimated the missing values from the most recent to
the oldest, this way always having the predictors complete for 7 days in advance. Before
imputation, the given dataset is split in 3 to estimate every metric with a dedicated model.

17

5.2.4. Testing
To assess the performance of my model, I synthetically removed part of the data from the test
set, imitating the structure of losses in the original dataset.
I decided to compare the performance of my model to the ones of the library models discussed
above. To do so, I applied IterativeImputer and KNNImputer with default parameters to the
complete train-and-test dataset with parts of the test data being synthetically removed as
described in the previous paragraph. At this point, one should note that both of these solutions
are intended to process entire dataframes without a train-test split.
To compare the performance of the models, I calculated the sklearn Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE)
[11,12,13] for their predictions on the train set.
5.2.5. Results
Table 2 presents how the proposed model performed on the test dataset compared to the library
IterativeImputer and KNNImputer with default parameters.
Table 2. Comparative performance of the proposed model, IterativeImputer, and KNNImputer.

Proposed AR model IterativeImputer KNNImputer

RMSE 6,60117 9,99687 5,71086
MAE 3,60792 6,85515 2,70549
MAPE 0,46682 1,37328 0,48849
The model has performed relatively well. It has shown a notable advantage over
IterativeImputer and outperformed KNNImputer in MAPE being slightly behind it against the
other metrics. This way, it was proven efficient for reconstructing the missing values of the
project's dataset.
5.2.6. Conclusion and Prospects for Future Work
In this research, I have developed a project-specific imputer of missing values based on an
autoregressive linear model (AR(7)). On a synthetically degraded testing dataset, the solution

18

has outperformed the regression-based IterativeImputer from sklearn.impute showing the
results comparable to the ones of the sklearn.impute.KNNImputer. Eventually, it was applied
to the original incomplete dataset to reconstruct its missing values and improve the quality of
the analysis discussed in the next sections of this report.
6. Machine Learning Models
My task in this project was to implement machine learning algorithms in order to get
predictions about future usage of the server resources and to clusterize the data in order to find
patterns in users’ (teams’ particularly) behaviour regarding the available resources.
The primary aim of my project is to build several different prediction and clusterization models
(regression models, random forest, neural network, K-Means,...) that will allow us to make
future predictions and compare their performance using predefined metrics. I decided to go for
MSE (mean squared error), MAE (mean absolute error) and R-squared, as these metrics are
easy to interpret while being decent estimators of the model performance.
Data preprocessing, feature selection, model training and performance evaluation, are some of
the major steps in the project. By fulfilling this steps one after another, I hope to create a solid
and trustworthy load prediction and clusterization models that could help the company to tackle
the problem of irrational resources distribution.
6.1. Data Preprocessing, EDA
Firstly, I started with exploratory data analysis (EDA) and data preprocessing, which really
stands for transforming/cleaning raw data. Since all the NA values were imputed by my
teammate, I noticed that the data is not normalised as the average value for memory usage is
about 28-30 %, while the average cpu usage is less than 4%. So, to normalise the data it is
natural to use StandardScaler which standardises features by subtracting the mean and scaling
it to unit variance. Data normalisation is crucial in machine learning as it results in better
performance, more stable model and StandardScaler is optimal here because there is a small
range of values for each feature.
To gain the first insight on the data I built histograms with the distribution of the main features
(memory, disk and CPU usage), which are presented below:

19

Figure 3. The distribution (histogram) of memory load.

Figure 4. The distribution (histogram) of CPU load.

20

Figure 5. The distribution (histogram) of disk load.
Obviously, we see that while the memory and disk distribution is pretty diversified, the CPU
distribution’s 3rd quantile is approximately 5%. This gives us an idea that CPU is probably
one of the most irrationally used resources. However, 3rd quantile for memory and disk
distribution are roughly 43% and 45% respectively. This numbers are not that high, so our
assumption about not optimal allocation of resources still persists.
Speaking about feature engineering, I tried to generate new features using tsfresh library , but
unfortunately it did not lead to any increase in metric proposed for evaluation of the prediction
models, so I decided to omit feature generation here.
Finally, as the dataset containes a great amount of features and new generated features did not
help, using dimensionality reduction techniques can help to increase the interpretability of the
data while keeping the maximum amount of information. A solution that I proposed was PCA
(principal component analysis). This algorithm is quite simple, the intuition behind it is to fit
the k-dimensional ellipsoid to the dataset where each axis is so called principal component
(vector). To define the optimal number of components, I will use the cumulative total variance
graph setting the benchmark to 0.9 of the total variance. So when the proportion of cumulative
variance reaches 0.9, we take the number of components that corresponds to this point.

21

Figure 6. The cumulative total variance graph.
After building the cumulative variance plot, it is clear that 10 components explain 90% of the
variance, so I will go for this number of components.
6.2. Data Clusterization
In this section of the project, I intend to create a number of clusterization models that will reveal
the teams that frequently use less capacity than is actually available. At first, I chose K-Means
since it's reasonably easy to implement and typically results in tighter clusters than other
methods. The main idea of this technique is to recalculate cluster centroids each iteration and
clusterize the points using Euclidean distance. But what value of k is usually taken? One of the
most famous approaches to find the optimal value of k is the elbow method that consists of
building a graph of the explained variance by y-axis and the number of clusters by x-axis. Then
one should choose the point (# of clusters) where the ‘elbow’ curve becomes much smoother.
In our case this number of clusters is 4. Here we can see the results of the K-Means algorithm
with k = 4:

22

Figure 7. Results of K-Means algorithm with k = 4.
The cluster means are presented below:

Figure 8. The cluster means obtained from K-Means algorithm with k = 4.
Clearly, we see that K-Means reveals (fig. 8) the first (0) and the fourth (3) clusters as the ones
with the lowest average resource utilization, while the second and third especially looks more
promising. However, it still debatable as even the third cluster with the highest average
utilization in CPU and disk still suffers from not sufficient memory utilization. So this
information will help the company to identify the teams (from first and fourth clusters
especially) that are likely to underuse the available capacities.
The second algorithm that was used to clusterize the data was Agglomerative Clustering which
is a well-known type of hierarchical clustering where the bottom-up approach is used, i.e the
similar clusters are joined greedily. To define the optimal number of clusters in this case one
may use silhouette method. This method shows how each point is similar to other points in its
own cluster compared to other clusters. It takes values from -1 to +1, where a higher value
depicts that a point is well classified. Silhouette method revealed the k = 3 is the most optimal

23

number here. The results are presented below(to simplify only one graph with CPU and
memory was used):

Figure 9. Results of Agglomerative Clustering algorithm with k = 3.

Figure 10. The cluster means obtained from Agglomerative Clustering with k = 3.
Well, we see that the clusters slightly changed (fig. 10) but the general interpretation remains
the same: 2 clusters seem to correspond to medium-loaded servers while 1 cluster represents
low-loaded servers. The number of servers belonging to the 1st (0) cluster is about 550, which
is roughly 75% of the total number of servers. What is more, several teams have more than 40
low-loaded servers (belong to the 1st cluster)
To conclude, our assumption seems valid and the company have a tendency to allocate to many
servers as obviously the load in the 1st cluster is low and thus can be redistributed in order to
get more free servers.

24

6.3. Building models to make predictions
In this part of the project my main objective was to build several machine learning models that
will be capable of predicting the potential CPU, memory and disk usage. To train and evaluate
the models, the data was further split into training and testing sets using 80:20 ratio. Initially,
several regression models were built as the primary ones. So, four regression model were
selected for evaluation: Linear Regression, Ridge Regression, Lasso Regression, ElasticNet
Regression. Cross-validation was performed on the training dataset in order to select the best
model based on the metrics mentioned above (MSE, MAE and R-squared).All in all, the best-
performing regression models were ElasticNet (fig. 11) and Lasso, which showed similar
metrics among the evaluated models. Then the models was validated using the test dataset. The
evaluation metrics, including MSE, mean absolute error (MAE), and R-squared, were
calculated to assess the performance of the model on the test data. Testing also revealed
ElasticNet and Lasso Regressions as the best models.

Figure 11. The graph with actual and predicted(via ElasticNet) memory usage.
However, it is crucial to compare the obtained results with several other models. For
comparison I chose Random Forest, Decision Tree, Custom Neural Network and several well-
known boosting algorithms (XGB, CatBoost, LGBM). This diversification of models will help
us to find the model that fits the data perfectly. To select the best performing model, we
compared the evaluation metrics across different models. By analyzing the performance
metrics, we identified the model that achieved the lowest MSE, MAE, and highest R-squared
value as the best performing model. The final results are presented below:

25

Figure 12. The dataframe with the metrics for all considered models.
Even though Random Forest and Decision Tree showed decent results, our initial ElasticNet
model should be chosen (fig. 12) as the final one.
6.4. Summary
Using the selected best-performing model, CPU/Memory/Disk load predictions were generated
for future time periods. These predictions provide insights into the expected load levels and
patterns, allowing resource managers to anticipate and allocate resources accordingly. The
load predictions can aid in capacity planning, resource provisioning, and workload balancing
to optimize system performance and ensure efficient resource utilization. Speaking about
clusterization, the data was split into several clusters and the results showed that there are
indeed several teams that have more than 40 servers with the average CPU, memory and disk
load less than 30%, which clearly indicates the necessity of redistributing the load in order to
have less ‘fully’ working servers.

7. Visualisation
In this project, the visualisation plays a crucial part since it allows to show the results of all
workings in an easy and comprehensive way. By playing with different visualisation
techniques, it is possible to make data look beautiful and understandable at the same time. Last
one is especially important because the main goal is to improve a real company’s effectiveness
of servers, and the presentation of our analysis and ideas should include details that are clear
even to a non-IT person. Finally, the visualisation makes clear the business implications of the
conducted analysis.

26

7.1. Prototype Creation
First step of my work was to draw the future look of the GUI (graphical user interface), so that
I could understand where each element and visualisation should be so that the whole picture is
holistic. For this purpose I chose the Figma platform, and the ultimate goal at this step was to
make a prototype – a clickable version of the future GUI, which fully imitated its work.
After I talked to the project supervisor and understood what the interface should look like to
be informative, I started creating the pages (see Appendix A). The first page (fig.15) shows the
main page of the GUI. It has the total number of servers indicated at the top and a pie chart with
distribution of problematic servers in the middle. By server problem here we understand
exceeding the permissible limit in one of the metrics. The red zone of the pie contains servers
with more than 2 occurring problems, the yellow zone – servers with 1 problem, and the green
zone – with no problems. The exact number of servers falling into each category is also shown.
From the main page we are able to reach 3 other pages, each related to the list of servers in each
category of the pie chart. By clicking at the specific section we move to the page with either
green (fig. 16), or yellow (fig. 17), or red (fig. 18) servers list. In the case of the last two, the
metric(s) which caused the problem(s) to appear is/are highlighted on the right, next to the
server’s name. By clicking at the coloured bar, we go to the server page with related metrics
(fig. 19). These are shown both as bar plots of average weekly load on each day and as line
plots of historical load during last month. The final page in this line is the daily load page (fig.
20). It is opened if we click at one of the bars of the weekly bar chart, so that we choose the day
that we are interested in. On this last page we can see a line graph with historical monthly load
for each metric on a specific day chosen beforehand. Besides all these informative
visualisations each page (except main one – there’s no need in this) also has features for easier
moving between them: breadcrumbs, pagination dots and scroll bar.
The complete prototype was presented to my supervisor. After fixing minor issues and getting
positive feedback, I moved on to creating real data visualisations.

7.2. Visualisations in Kibana and Grafana
Twomain instruments that provide a possibility to construct professional visualisations straight
from the database are Kibana and Grafana. They are pretty similar in the way they work and
look, the main difference is what they are used for. The purpose of Grafana is to analyse and
visualise system usage indicators of processor, memory, disk and input/output. Grafana does

27

not allow full-text data queries. On the other hand, Kibana runs on Elasticsearch and is mainly
used for analysing log messages [14]. It also presents a bigger range of possibilities to visualise
data than Grafana. The last advantage of Kibana became a main reason why it was chosen to
be the desired instrument.
Unfortunately, when I started working, it turned out that I did not have access to corporate data
in this application, and it was not possible to solve this problem due to specific privacy rules
of the company I am cooperating with. My supervisor recommended that I leave it and move
to another application, where I am guaranteed to be able to make high-quality visualisations,
without the need to connect to the corporate network, and it will be a worthy analogue of the
previous tools.

7.3. Visualisations in Tableau
As an alternative to the aforementioned instruments, I chose Tableau. I already had an
experience working with it and I considered it professional enough to make informative
visualisations with a decent look. The dashboards, which can be made there out of several
charts, are suitable both for company needs to obtain desired information about servers load,
and for me to have as a project product. The visualisations made were mainly based on the
Figma prototype, presented earlier. Besides this, thanks to the wide functionality of Tableau I
was able to construct some additional plots, which were not planned to be included in the
dashboard initially. This showed another advantage of working in this application.
Some preparation of data was conducted by the means of Python code and Pandas library
before I started working on dashboards. The data frame I received from my group mates was
unsuitable for making visualisations: it contained day offsets which cannot be processed
correctly by the Tableau system. That is why I changed these offsets to real dates. I also made
minimal modifications to the data table, like change of column names to more clear ones and
removal of unnecessary columns.
The final product of my work on this project is a story, which is a collection of five dashboards
(see Appendix B). Each dashboard represents its own topic (i.e. the graphs presented in it are
put together on purpose), so it is possible to get a lot of different useful information and look
at a single problem from different sides. Consider the first dashboard (fig. 21). It has three
plots: pie chart, bar chart and line plot. The first one in the left upper corner shows the number
of servers in each cluster (clusters were determined earlier and described in section 6.2), the

28
1 Here and afterwards in this part team names were changed from the original.

second one in the right upper corner displays average load with division by cluster and metric,
and the third one, in the bottom, – average load dynamics by all three metrics throughout the
observation period (around 1 month). From this dashboard it is easy to find out that more than
75% of servers belong to cluster 0, while the 2nd cluster has the smallest number of servers in
it. Also, clustering successfully separated servers with low and high metrics values. The
timeline showed that disk and memory load are doing generally better than CPU: they have
higher load and are stationary on full range, while cpu is significantly lower and have spikes in
usage on some days.
The next dashboard (fig. 22) has three big bubble graphs. They are huge due to the big number
of servers being analysed. From left to right, average CPU, memory and disk load by server
are shown: the bigger is the bubble, the higher is the load. Different colours indicate belonging
to one of the teams. Even though this chart is quite messy, we are able to get a lot of useful
information about server resources usage in each team. For example, the blue team1 uses disk,
memory and CPU resources quite uniformly among their servers, while the green team has
some servers underusing memory and CPU (bubbles are very small compared to others). I
presume this team does not need so many servers and those which stand idle can be removed
to save energy and money.
The following three dashboards are very similar to each other. They have the same list of plots:
pie chart in the right upper corner with number of servers having metric value below a
threshold, bar plot in the upper centre with metric load weekly dynamics, bubble chart in the
right upper corner which shows average metric load by team and box-and-whisker plot in the
bottom depicting metric load dynamics throughout the observation period, and only differ by
the metric analysed. The third dashboard (fig. 23) has a CPU metric in it. Pie chart shows that
only a little number of servers are loaded above the low threshold, which is bad. This means
the load on the servers should be redistributed in such a way as to keep at a medium level on
all servers. Probably, this is a reason for the reduction in server count. The bar plot outputs
quite predictable statistics: CPU load is smaller on Saturday than on the other days of week,
while the smallest level is reached on Sunday, both of them being weekends. During the week,
the highest CPU load is observed on Friday. Moving on to the bubble chart, we have the brown
team as an absolute leader in CPU usage, while the purple and yellow teams underuse it. Lastly,

29

on each day of the observation period CPU usage was quite low on average, with only single
servers out of many showing high results.
The fourth dashboard (fig. 24) holds information about memory load, and here everything
looks better than on the CPU page. Pie chart has almost half-and-half division into servers with
memory load above threshold and below it. Over the weeks and last month in general, the
memory usage is basically the same every day. In teams, blue and red ones seem to be
underusing resources compared to the others, but the difference is not very big.
The last dashboard (fig. 25) tells us how disk load goes on, and it appears to be the most stable
among all metrics. Pie chart shows that about ⅔ of all servers use disk above threshold level,
which is good. Weekly load is constant every day, and similarly each day of the observation
period has a common disk load average and maximum. Most of the teams have a decent load
of disc, except the purple and blue.

7.4. Direct Connection between Tableau and Jupyter Notebook
As an additional task, I decided to implement a direct connection between the visualisation
application, Tableau, and Jupyter notebook, where the data was modified before the
visualisation step. Initially, it was necessary to export data from Jupyter as a CSV file, and then
load it manually to Tableau. I proposed that it takes too much time and human actions to simply
transfer a table between two apps, and so I decided to automate this process. This improvement
is also significant for company needs, since it allows to combine all steps of work completed
by different group members of the project into one uninterrupted pipeline, with Prometheus
database as the input and database in Tableau ready to be visualised as an output.
After conducting research, I found a library that perfectly suited my needs in linking two apps:
Jupytab. It allows to explore data in Tableau which is dynamically transferred from Jupyter
notebook [15]. That is, every time data is changed in the notebook, Tableau will instantly
update the database and alter the visualisations made.
To start with, the Jupytab was loaded to the Jupyter notebook with data frame preparation code
(fig. 13). It was necessary to load both jupytab and jupytab-server libraries, since first one cares
about notebook and second one allows to use server for data transmission. Then, I created an
instance of a publication-ready table and assigned to it the data frame with required information
about server load (fig. 14). In the next two cells I allows Tableau to retrieve data from the table

30

(as noted in documentation [15], the occuring error is harmless to the whole process) and the
schema of all available types in the table. The last is done for troubleshooting and to monitor
that data is transmitted correctly and completely to Tableau. As a last step, by the use of a
special configuration file, I was able to open the port for connection and tell Tableau the path
to my notebook file. At this point, the table with data is sent to the port, while I simply open
the same port in Tableau and obtain the live connection to the database.

Figure 13. Installation of jupytab and jupytab-server.

Figure 14. Implementation of algorithm that sends data from Jupyter notebook directly to Tableau throughjupytab.

8. Conclusion
Throughout the work, we managed to build a complete flow from raw Prometheus metrics to
interactive dashboard visualising the historic usage of the company’s machines and the
obtained ML insights. To make it possible, we had to develop a custom Prometheus client,

31

resolve the issue of systematic data incompleteness, implement and tune a series of MLmodels,
design the visualisations, and finally set up a channel to deliver our Python results to the
Tableau dashboards. We found the regularities in the way the company’s employees use their
development stands making conclusions on how the server usage can be optimised and what
expenditures on computational power the business should expect in future.

8.1. Future Improvements
Although the obtained results are already quite impressive, there is always room for
improvement. For example, at its current stage, the system needs to be launched manually for
the scripts to work and the results to update. Redesigning it to allow dynamic data collection
and processing would give a significant boost to the quality of user experience. Data collection
might be automated to receive new data every fixed period of time (for instance, gather new
data every day), or when the user requires it. We can also vary the metrics (other metrics might
be more illustrative or meaningful), although the provided ones show relatively good
performance. In general, this work can be pipelined to arrive at better results or allow more
convenient use.
As for data preprocessing, the proposed reconstruction algorithm has performed pretty well as
compared to the existing generalised analogues. Nevertheless, one may notice a slight trend
appearing when the data is reconstructed for a large time period. Experiments with the model's
hyperparameters are likely to further improve its accuracy. Moreover, given the success of
KNNImputer on the testing dataset, one could try to achieve even better performance tuning
this package solution by, for instance, developing a custom time-based distance metric.
ConcerningML, even though several models showed great performance and produced accurate
predictions, we must not stop on this. Some companies use reinforcement learning (RL) to
analyse the distribution of server resources. In a reinforcement learning setup, the server is
usually considered as the environment and the agent can be a software program that makes
decisions about resource allocation. The agent will learn from its past decisions and adjust the
strategy to optimise the reward signal over time. Clearly, this task is very challenging but the
potential results obtained from the agent may outperform all current models.
The visualisation step is one that certainly can be extended. Although 5 dashboards, which are
ready to this point, do reflect information about the state of server utilisation by various metrics,
this may still not be enough to make a certain conclusion about each server’s state. A lot of

32

other plots can be added, and the current controversial plots (like bubble plots on dashboard 2)
can be changed into something more obvious and indicative. This way, the number of
dashboards for a complete report on the servers status must be around 15. The work on this part
of the project will be continued to benefit the company.

Appendixes
Appendix A. Figma Prototype Pages

Figure 15. First page, or main page of the prototype. It contains the number of servers and pie chart with theirdistribution taking into account their problems.

33

Figure 16. Page with servers coloured green. No problems found in these servers.

Figure 17. Page with servers coloured yellow. One problem found in these servers. Problem is indicated on theright of the server name.

34

Figure 18. Page with servers coloured red. Two or more problems found in these servers. Problems are indicatedon the right of the server name.

Figure 19. Page with server metrics. It shows history of last month and average load by weekday for everymetric.

35

Figure 20. Page with daily load for every metric on a specific server.

Appendix B. Tableau Dashboards

Figure 21. Dashboard 1. Server count by cluster, average load by cluster and metric, average load dynamicsthroughout the observation period.

36

Figure 22. Dashboard 2. Average CPU, memory and disk load by server.

Figure 23. Number of servers using CPU below a threshold, CPU load weekly dynamics, average CPU load byteam, CPU load dynamics throughout the observation period.

37

Figure 24. Number of servers using memory below a threshold, memory load weekly dynamics, averagememory load by team, memory load dynamics throughout the observation period.

Figure 25. Number of servers using disk space below a threshold, disk load weekly dynamics, average disk loadby team, disk load dynamics throughout the observation period.

38

References
1. Samuel, Nicholas. “What Is Tableau? - A Comprehensive Guide.” Hevo, 11 Nov. 2021,

hevodata.com/learn/what-is-tableau/.
2. “6.4. Imputation of Missing Values.” Scikit Learn, 2023, scikit-

learn.org/stable/modules/impute.html#impute. Accessed 9 June 2023.
3. Buuren, Stef Van, and Karin Groothuis-Oudshoorn. “Mice: Multivariate Imputation

by Chained Equations inr.” Journal of Statistical Software, vol. 45, no. 3, 2011,
https://doi.org/10.18637/jss.v045.i03.

4. “Sklearn.Impute.IterativeImputer.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.imp
ute.IterativeImputer. Accessed 9 June 2023.

5. “Sklearn.Linear_model.Bayesianridge.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn
.linear_model.BayesianRidge. Accessed 9 June 2023.

6. “Sklearn.Impute.KNNImputer.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html#sklearn.impute.
KNNImputer. Accessed 9 June 2023.

7. “Sklearn.Metrics.Pairwise.Nan_euclidean_distances.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.metrics.pairwise.nan_euclidean_distances.
html. Accessed 9 June 2023.

8. “The Elements of Statistical Learning: DataMining, Inference, and Prediction” - Trevor
Hastie, Robert Tibshirani, Jerome Friedman, p. 206
https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf

9. “The Elements of Statistical Learning: DataMining, Inference, and Prediction” - Trevor
Hastie, Robert Tibshirani, Jerome Friedman, p. 11 – 18
https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf

10.“Statsmodels.Regression.Linear_model.Ols .”
Statsmodels.Regression.Linear_model.OLS - Statsmodels 0.15.0 (+14),

https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf
https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf

39

www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html.
Accessed 9 June 2023.

11.“SKLEARN.METRICS.MEAN_SQUARED_ERROR.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.
metrics.mean_squared_erro. Accessed 9 June 2023.

12.“SKLEARN.METRICS.MEAN_ABSOLUTE_ERROR.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn
.metrics.mean_absolute_error. Accessed 9 June 2023.

13.“SKLEARN.METRICS.MEAN_ABSOLUTE_PERCENTAGE_ERROR.” Scikit,
scikit-
learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.
html#sklearn.metrics.mean_absolute_percentage_error. Accessed 9 June 2023.

14.“Sravnenie Mezhdu Grafanoj i Kibanoj.” Sravnenie Mezhdu Grafanoj i Kibanoj -
Russkie Blogi, https://russianblogs.com/article/4657389642/.

15.Tribondeau, Brian. “CFMTech/Jupytab: Display in Tableau Data from Jupyter
Notebooks.” GitHub, 2023, github.com/CFMTech/Jupytab.

16.Prioglio, Charly. “Wireframe Component Library.” WCL - Figma, Nov. 2018,
https://www.figma.com/file/gOZcXeqIvibFX26rd0bMTw/Wireframe-Component-
Library-v1.0-(Copy)?type=design&node-id=805%3A0&t=MXpNXLCnyf6gqFco-1

17.Feature/Variable importance after a PCA analysis -
https://stackoverflow.com/questions/50796024/feature-variable-importance-after-a-
pca-analysis

18.“An Introduction to Statistical Learning with Applications in R” - Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani, p. 59 – 103
https://www.statlearning.com

19.“The Elements of Statistical Learning: DataMining, Inference, and Prediction” - Trevor
Hastie, Robert Tibshirani, Jerome Friedman, p. 501 – 553
https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf

https://russianblogs.com/article/4657389642/
https://www.figma.com/file/gOZcXeqIvibFX26rd0bMTw/Wireframe-Component-Library-v1.0-(Copy)?type=design&node-id=805%3A0&t=MXpNXLCnyf6gqFco-1
https://www.figma.com/file/gOZcXeqIvibFX26rd0bMTw/Wireframe-Component-Library-v1.0-(Copy)?type=design&node-id=805%3A0&t=MXpNXLCnyf6gqFco-1
https://stackoverflow.com/questions/50796024/feature-variable-importance-after-a-pca-analysis
https://stackoverflow.com/questions/50796024/feature-variable-importance-after-a-pca-analysis
https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf

40

20.Bader, Andreas, Oliver Kopp, and Michael Falkenthal. "Survey and comparison of
open source time series databases." Datenbanksysteme für Business, Technologie und
Web (BTW 2017)-Workshopband (2017).

