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Diffusion Probabilistic Models

Gradually denoise until a clear image sample appears




Classical Formulation

Given:
Data: Lo ~ (g
Diffusion process: q(x:|x:_1

wta\/l_ txt—lvﬁtly T~N 07[

2

Goal: reverse it! t—l‘wt Q?t_1|.fl§'t — Lo\ L, ,ZQ Lt,

Forward: data — noise

)

Reverse: noise — data



.... M... .P..

dx = f(x, t)dt + g(t)dw

Forward SDE (data — noise)

Stochastic Differential Equations

score function

| data)

noise —

Reverse SDE (

Y. Song et al, Score-Based Generative Modeling through Stochastic Differential Equations, ICLR2021



Probabilistic Flow ODE

Forward SDE
dx = f(x,t)dt + g(t)dw

Backward SDE
dx = [f(x,t) — g(t)*Vx logp(x)]dt + g(t)dw

Probabilistic Flow ODE z
1

dx = |£(x,t) = 5 g(t)2Vx log py(x) |

Why?

> ODE solvers have lower error than SDE ones — less sampling steps
> Higher order ODE solvers perform reasonably in ~10-15 steps.
What about sampling in 1-4 steps?



Classes of Distillation Methods

Classical distillation techniques
> Non-DPM specific distillation methods;
> Often combined with other distillation methods.

Distribution matching distillation
>  Minimizing reverse KL using pretrained DPMs.

Rectified flows
> Directly rectifying the DPM trajectories and then distilling using classical approaches.

Consistency models
> Learning a consistency function on top of the teacher trajectories.
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Naive Knowledge Distillation

1. Prepare pairs: {x}, x-}, where x.~N(0,1) and x% — x} using a teacher DPM ¢,
2. Train a student model f,: ||f, (x}) — x4

‘—>min
@

> Takeaways: single-stage, data-free, expensive training, low performance, single step.

Pstudent (X() ‘X'[)

E. Luhman and T. Luhman, Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed, 2021
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Progressive Distillation

1. Train a student to approximate t =1 €
two subsequent teacher steps; 233 = f(21:1)+

2. Student — teacher, 4

3. Go to 1 until desired # steps. L

41 /2 = ] (A:s,fm 1)

i

y Takeaways Z1/4 = f (Zl,f‘.z? 7])1\/

1. Better quality than KD:; B
. . X = f(Z1/4: )3

2. Multi-stage training; . 2

3. Allows multiple steps at inference. t = () X

T. Salimans and J.Ho Progressive Distillation for Fast Sampling of Diffusion Models, ICLR2022

Distillatio>
v Distillatio>

Distiuatio>

X

>X = f(z1;0)
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Distribution Matching Distillation

> Student Gy(z), z~N(0,I) represents prqye(x);

o) (lOg (pfake (CE) ) )
“ ™ Pfake preal(CU)
ZN_/\;:(O;I) - ( lOg Preal (CB) N lOg pfake(CB))

r=Gg(2)

DkrL (pfake H preal)

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024
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Distribution Matching Distillation

> Student Gy(z), z~N(0,I) represents prqye(x);

(e(0)
T~ Pfake Preal (37 )

. —(log prea () — log prake())

DkrL (pfake ” preal)

zrv./\/'zO;I)
r=Gg(2)
V D — 4: —— rea T e V G |
oKL o NO:T) | (3 1(T) — Sfak (513)) 0 9(2)_
r=Gg(2)

Sreal(z) — Vcclog Preal (x)a Sfake (33) — VmIOg pfake(w)

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024



Distribution Matching Distillation

Key idea: approximate V.. D,; using DPM forward passes
> Pretrained DPM teacher approximates s,.q;(x¢, t) = V., 109 Dreai(xt);

> Auxiliary DPM is trained to approximate seqxe (x¢, t) = Vi, log prake (x;) during distillation.

VoD ~ 0 [’wtat (Sfake (CBt, t) — Sreal(mty t)) VoG (z)] ;

z,t,x, ¢

2 N(071)9 L = GQ(Z)a L~ U(TminaTmax)a Lt Qt(xt‘x)

Questions
1. The effect of scores for t > 0;
2. Does reverse KL cause problems?
3. Can we avoid training the auxiliary DPM for s¢qy. (x¢, )7

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024
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Distribution Matching Distillation

The effect of scores fort > 0

> Vi log preqai(xe) and V. log prake(x¢) for t > 0 help to avoid unreliable scores;

diffusion

—

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024
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Distribution Matching Distillation

Reverse KL problem

initial state

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024
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Distribution Matching Distillation

Reverse KL problem L= ( log prea(T) — IM@)

ZNN?O;I)
=Gy (2)

1nitial state (a) real score only

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024 21



Distribution Matching Distillation

Reverse KL problem N“Z(O.I) — ( log preal () — 10g Prake (m))
z=Gp(2)

1nitial state (a) real score only  (b) real+fake
scores

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024 22



Distribution Matching Distillation

How to mitigate mode collapse?

1nitial state (a) real score only  (b) real+fake
scores

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024
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Distribution Matching Distillation

How to mitigate mode collapse?

>  Combine with mode preserving distillation methods, e.g., naive distillation approach.

1nitial state (a) real score only (b) real+fake  (c¢) real+fake scores
scores & regression loss

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024 24



Distribution Matching Distillation

distribution matching gradient
VoDl

Distribution Matching Gradient Computation

il

real data
score function

one-step generator

Gy

-
4R

computed
gradient

random latent 2 noisy real score

1mage image fake score

R

=

- regression
loss

paired dataset
generated offline

fake data
score function

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024 25



Distribution Matching Distillation | Summary

>  Minimizing reverse KL using pretrained DPMs;

> Requires training an additional DPM during distillation;

> Requires additional distillation approaches to avoid mode collapse,

> The model is unavailable — unclear if it provides superior quality / diversity trade-off;

> Data-free.

T. Yin, et al, One-step Diffusion with Distribution Matching Distillation, CVPR2024
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Score Distillation Sampling

How to avoid training the auxiliary DPM during distillation?

> Define prqe(x) as a set of delta distributions: x' = Gy ;

’ q(xt\xi) = N(xt‘atGHi:GtZI) - Sfake(xt: t) = thl()g q(xt\xi ~ - (X - atGHi) / O'tz :"E/ Ut‘

VoDkr~ E  [wion(Stake(Tt, ) — Sreat(z¢,1)) VoGo(2)]

Questions
> What are the key differences with DMD?
> What is the role of s¢qi. (x¢, t) In SDS? Does it regularize the training?

> How DMD stands against SDS in terms of text-to-image performance?

B. Poole, et al., DreamFusion: Text-to-3D using 2D Diffusion, ICLR2023
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Unbiased Score Estimator

How to avoid training the auxiliary DPM during distillation?

> Idea: estimate V.. log prqre (%) using unbiased score estimate from synthetic data:

L — Ot

va:t logpfake(zt) — z 9 |',Et
Ot

> where x~ Prake » Xt ~ q(xt‘x)
> Single point estimate: V. log prake (x¢) = —(x; — a;X)/0f
> The estimate may be more accurate with more samples from p¢,., see [1].

Questions
> How many samples are needed for the reasonable estimate?
> Would it be more efficient sampling these samples using G4(z) at each training iteration?

[1] M. Neidoba, et al, Nearest Neighbour Score Estimators for Diffusion Generative Models, arXiv2024



Adversarial Diffusion Distillation

ADD combines SDS and GAN objectives

1. Impressive image quality and text-alignment for 1-4 steps;
2. Both objectives lead to mode collapse — very poor image diversity for a given prompt.

Woman bent slightly on skis wearing goggles and snowsuit.

o
< G- L
- e
Q %

< “,\

A. Sauer et al., Adversarial Diffusion Distillation, 2023 30




Rectified Flows

General idea
> Perform k stages of rectifying the trajectories of the pretrained DPM,
> Distill the resultant "flow”™ model using one of the classical distillation methods;

Motivation
> DPM trajectory rectification simplifies the learned mapping;
> Straighter trajectories lead to lower error of ODE solvers and are easier to distill.

™~ TS
| . N \\
\,i li% Noise \»\\)%
Noise e T
/’
Image Image

X. Liu et al, Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR2023
X. Liu et al, InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-lmage Generation, 2023
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Rectified Flows | Formulation

Notation
> my— real distribution, m; — standard Gaussian distribution;
>  v(Z,t) — velocity function, t € |0, 1].

Rectified flow

dZ;
dt

Objective

= v(Z,t), initialized from Zy ~ 7, such that Z; ~ 4

1 -
min/ 2 [[(X1 — Xo) —v(Xe, t)||° dt,  with X, =¢X1 + (1 — )Xo
0 - -

X. Liu et al., Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR2023
X. Liu et al., InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation, 2023



Rectified Flows | Algorithm

Preparation
> Initialize vy (Z,, t) with the teacher parameters 6;
> Construct initial pairs of (X, X;) ~ my X m; using PF-ODE of the pretrained DPM.

Procedure: Z = RectFlow((Xg, X1)):

Inputs: Draws from a coupling (X, X;) of 7y and 7; velocity model vy: R? — R? with parameter 6.

X1 — Xo —v(tX1 + (1 — 1) X, t)HQ] , with £ ~ Uniform(|0, 1]).

Training: 0 = arg min [E [
0

Sampling: Draw (Zy, Z1) following dZ; = v;(Z;,t)dt starting from Zy ~ my (or backwardly Z; ~ ).
Return: Z = {Z;: t € [0,1]}.

Reflow (optional): Z**! = RectFlow((Z%, ZF)), starting from (Z, Z?) = (Xo, X1).

Distill (optional): Learn a neural network 7" to distill the k-rectified flow, such that Z* ~ T (Z7).

X. Liu et al., Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR2023
X. Liu et al, InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-lmage Generation, 2023 34



Rectified Flows | Summary

> Clear and reasonable intuition behind the trajectory rectification;
> Multiple rectification stages (typically 2 stages) + distillation procedure;

> Not-established in practice (looking forward to the SD3 public release);

35



Consistency Distillation

Y. Song et al., Consistency Distillation, ICML2023
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Consistency Distillation | Formulation

Consistency function
> Given a solution trajectory {x;};cc 1 define f : (x¢,t) — X
> Self-consistency property: f(x¢,t) = f(x¢,t") forallt,t’ € |e, T

> Boundary condition: f(Xe,€) = X,

Y. Song et al., Consistency Distillation, ICML2023
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Consistency Distillation | Training

1. Parameterize fgy with the teacher DPM,;
2. Sample x ~ paqrq(x), x¢ ~ q(xtn|x);

3. Obtain x?

tn—-1

xfn_l — Ty, — (tn_l — tn)tns¢(xtn, tn) (Euler step)

using ODE solver with the teacher model ¢:

Objective
Lop = d, )\(tn)d(fg (il?tn, tn), fg ($2bn_l : tn—l))

L~DPdata

> A= 1in practice. d(-) — arbitrary distance function, e.g., L1, L2, Ipips.

Question: what is intuition behind this objective?

Y. Song et al., Consistency Distillation, ICML2023
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Consistency Distillation | Sampling

Initialization
> Sample x;, ~N(0,1);
> Select intermediate time steps {t,,} for multi-step sampling;

Algorithm
1. Estimate x{, for one step using fp (x¢,, ty);

2. Add noise x; ~ q(xtn\ xfo);
3. Goto1.

Y. Song et al., Consistency Distillation, ICML2023
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Consistency Distillation | Summary

1. Single-stage integrator-learning method that may have some interesting interpretations;
2. Uses real data during distillation;

3. Does not support deterministic multi-step sampling;

4. Lower fidelity and much higher diversity compared to the collapsed alternatives.

Questions
> Is it important how to approximate V,, log p; (x.,) to get x? ?

t,_

> Can we come up with the deterministic sampling?
> Do we need real data?

Y. Song et al., Consistency Distillation, ICML2023
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Consistency Trajectory Models

Consistency models
> Left endpoint is always fixed — does not support integrating arbitrary trajectory intervals;
> Performance degrades with more sampling steps;
>  Does not support deterministic multi-step sampling.

Consistency Trajectory Models

Generalize consistency models by learning a more versatile integrator:
Integrate arbitrary sub-trajectories;

Recover the score function when At - 0 — allow using ODE solvers;

. Allows deterministic multi-step sampling.

AW N = vV

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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Consistency Trajectory Models

D. Kim et al.,

Score-based models Distillation models CTM
Estimate the score Estimate the endpoint of PF ODE Estimate the entire PF ODE trajectory

NFE =1

: v Discretization errors!
© puy
o)
E Use an SDE/ODE solver w/ model scores
Lﬂ 'T RZ \(l(l noise
E
: . Y - '
Discretization errors!
Accumulated errors!

Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024 43



Consistency Trajectory Models | Training

> Detfine an integrator of the trajectory interval {x, },efs o)

Go(x¢,t,8) =~ Solver(xy,t,s;¢) ~ G(x4,t,s)

S S
GG(Xtatas) — th T (]- _ g)gQ(Xht? 'S)

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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Consistency Trajectory Models | Training

> Detfine an integrator of the trajectory interval {x, },e[s o)

Go(xt,t,8) =~ Solver(xy,t,s;¢) ~ G(x4,t,5s)

S S
GG(Xtatas) — th T (]- _ Z)QQ(Xht? S)

Soft consistency matching

Go(xt,t,5) = Gsg0) (Solver(xt, t,u; @), u, s)

> Local consistency: u = t — At (Similar to CD);
> Global consistency: u = s apply teacher for the entire interval;

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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CTM objective

Consistency Trajectory Models | Training

£CTM(9; ¢) =

i,
4

te[0,T]

ﬂ

Lse[0,t]

.
4

u€ls,t)

.
4

X0

Xest(xt7 t, S) - = ng(e) (G9 (Xt, t, S)lv ‘8; O)
Xtarget(xta t,u, S) - = ng(@) (ng(B) (SOlver(Xt7 by U; ¢)7 u, 3)7 S O)

.
v

Xt \XO

d(xtarget(xta t7 u, 3)7 Xest(xt7 t7 3))

h

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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Consistency Trajectory Models | Training

CTM objective
xest(xt7 t, 8) - = ng(e) (GG (Xt7 t, 8)7\3; O)
Xtarget(xt7 t,u, S) .= ng(@) (ng(O) (SOlver(xt7 b, U; ¢)7 u, 3)7 Sy O)

LCTM(H; ¢) - = ‘Ete[O,T] ﬂsE[O,t] ﬂue[s,t) €x0 ﬂxt\x() d(xtarget(xta t,u, 3)7 xest(xtat7 8))

DSM objective
> For s ==t, directly minimize the DPM objective — learning the score function.

EDSM(H) — ‘-‘:t,Xo '-‘:xt|x0[HXO — ge(xta t7t)||g]

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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Consistency Trajectory Models | Training

CTM objective
xest(xt7 t, 8) - = ng(e) (GG (Xt7 t, 8)7\3; O)
Xtarget(xt7 t,u, S) .= ng(@) (ng(O) (SOlver(xt7 b, U; ¢)7 u, 3)7 Sy O)

LCTM(H; ¢) - = ‘Ete[O,T] ﬂsE[O,t] ﬂue[s,t) €x0 ﬂxt\x() d(xtarget(xta t,u, 3)7 xest(xtat7 8))

DSM objective
> For s ==t, directly minimize the DPM objective — learning the score function.

LDSM(H) — ﬂt,Xo ‘!:xtle[”Xo — ge(xh tat)”g]

Final objective

L(0,m) := Lctm(0;5 ) + ApsmLpsm(0) + AganLcan (60, 1)

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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tn=0

(a) v = 1 (Fully stochastic)

Consistency Trajectory Models | Sampling

b)1>~v>0

T T

t1 {1

vV 1 — %t

to to

tN — O tN — ()

(¢c) v = 0 (Deterministic)

y = 0 — provides the best performance in the single and multi-step settings.

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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Consistency Trajectory Models | Summary

> Generalize consistency models by learning a more versatile integrator,
> Unlocks deterministic sampling;
> Unlocks high-quality multi-step sampling;

> Training procedure is overloaded. Many details seem redundant. In our
experiments, doing CD on individual intervals works fine.

>  EXxpensive training due to global consistency that requires many teacher steps;

Questions
>  Which of the proposed modifications are critical®?

D. Kim et al., Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion, ICLR2024
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Research Directions in Consistency Models

Bi-directional integrator
>  Would like to learn a bi-directional integrator that allows both accurate and efficient inversion.

Intuition: ”integration” might be a localized and disentangled task

CD requires relatively few steps for convergence — observes small amount of data;

Small portion of weights are important during distillation;

Distilled models can be readily pluged-and-played into different DPMs and editing methods;
Can we distill faster and better if we focus on trajectory properties, e.g., curvature?

VoWV NV WV

How to distill effectively for high CFG scales?
>  Higher CFG scales lead to more curved trajectories — more difficult and unstable distillation.

Combine CD and RF ideas
> Generalize CMs to arbitrary vector fields and apply it to RF.

51



