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Modern trends in machine learning

• Exponential growth in model sizes and data volumes.

Figure: Trends in machine learning tasks
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Varieties of distributed learning

• Cluster learning (big players): training within one large and powerful
computing cluster

• Collaborative learning (all players): pooling computing resources over
the Internet

• Federated learning (another paradigm): learning from users’ local data
using their computing powers

Figure: Federated Learning
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The most common distributed setting

• Horizontal, offline distributed learning:

min
x∈Rd

[
f (x) :=

1
M

M∑
m=1

fm(x) :=
1
M

M∑
m=1

1
nm

nm∑
i=1

l(g(x , ami ), b
m
i )

]
,

where x – model weights, g – model, l – loss function.
• The data is shared among M computational devices, each device m

has its own local subsample {ami , bmi }
nm
i=1 of size nm.

• The focus of this presentation.
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Communicate centralized via server

Let us look at an example of how classical GD becomes distributed.

Algorithm Centralized Distributed GD

Input: Stepsize γ > 0, starting point x0 ∈ Rd , number of iterations K
1: for k = 0, 1, . . . ,K − 1 do
2: Send xk to all workers ▷ server
3: for i = 1, . . . , n in parallel do
4: Receive xk from server ▷ workers
5: Compute gradient ∇fm(xk) at point xk ▷ workers
6: Send ∇fm(xk) to server ▷ workers
7: end for
8: Receive ∇fm(xk) from all workers ▷ server
9: Compute ∇f (xk) =

1
M

∑M
m=1 ∇fm(xk) ▷ server

10: xk+1 = xk − γ∇f (xk) ▷ server
11: end for
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What are we fighting for?

• Question: distributivity is necessary for parallelization, but why can’t
we achieve full parallelization?

• Communication costs are a waste of time.
• The problem of communication bottleneck is actual for all distributed

learning productions.
• There are many ways to fight for effective communication.
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The idea – more local computation

• In the basic approach, communications occur every iteration.
• If computing (stochastic) gradients is much cheaper, why not count

multiple times between communications.
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Parallel SGD/FedAvg/Local SGD

The idea:
• Make local steps (local training):

xk+1
m = xkm − γ∇fm(x

k
m).

• Every T th iteration, forward the current xkm to the server. The server

averages xk = 1
M

M∑
m=1

xkm, and forwards xk to the workers. The

workers update: xkm = xk .
• Centralized distributed SGD is a Local SGD with T = 1.

Mangasarian O. Parallel Gradient Distribution in Uncon-
strained Optimization
McMahan B. et al. Communication-Efficient Learning of Deep
Networks from Decentralized Data
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How it works

• Problems: 1) LSTM on 10 million public posts, 2) CNN on CIFAR-10.

Figure: Comparison of Local SGD (FedAvg) and Centralized Distributed SGD
(FedSGD).

McMahan B. et al. Communication-Efficient Learning of Deep
Networks from Decentralized Data
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How it convergences

• Problem: logistic regression on a5a LibSVM dataset.

Figure: Dependence of convergence of Local SGD on number of local
steps

• Typical convergence of this type of methods: faster in terms of
communications, worse quality of ultimate accuracy.

Khaled A. et al. Tighter Theory for Local SGD on Identical
and Heterogeneous Data
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How it convergences

• Question: what causes this effect?

It occurs due to the heterogeneity
of local data on different devices.

• In the theoretical estimates of the convergence of the method, this
also shows up:

O

(
∥x0 − x∗∥2

γK
+

γσ2
opt

M

)
,

where γ ≤ O
( 1
LT

)
– stepsize, K – number of local iterations on each

device. The estimation is given for the case of convex and L-smooth
fm.

Khaled A. et al. Tighter Theory for Local SGD on Identical
and Heterogeneous Data

• Moreover, the σ2
opt factor is not eliminated at all.

Glasgow M.R. et al. Sharp bounds for federated averaging
(local sgd) and continuous perspective
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Solving the problem

• Question: the problem of the local method is convergence to a
neighbourhood. How can it be interpreted and then solved?

• Local task regularization as a defence against local overfitting
(FedProx):

f̃m(x) := fm(x) +
λ

2
∥x − v∥2,

where v – certain reference point.
• Run local iterations not for fm, but for f̃m.

Li T. et al. Federated Optimization in Heterogeneous Net-
works
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More modifications and generalizations

• Using so-called shifts to control bias due to heterogeneity.
Karimireddy S. P. et al. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning
Mishchenko K. et al. ProxSkip: Yes! Local Gradient Steps
Provably Lead to Communication Acceleration! Finally!

• Using of consensus gossip procedures when centralized
communications are unavailable

Beznosikov A. et al. Decentralized Local Stochastic Extra-
Gradient for Variational Inequalities
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How it works
• Problem: logistic regression on EMNIST (letters).

Figure: Comparison of Local SGD (FedAvg), FedProx and SCAFFOLD and
Centralized Distributed SGD.

Karimireddy S. P. et al. SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning
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What do we want to achieve, anyway?

• Lower bounds:

K = Ω

(√
L

ε

)
.

L – smoothness constant of f .
• What method will give such estimates?

Distributed version of
Nesterov’s accelerated method with 1 local step between
communications.

• Note that local methods were invented for stochastic setups. But even
here there is no improvement in the general case:

Woodworth B. The Min-Max Complexity of Distributed
Stochastic Convex Optimization with Intermittent Communi-
cation

• But there are settings where localised methods shoot out.
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Data similarity

• Distributed learning problem:

f (x) =
1
M

M∑
m=1

fm(x) =
1
M

M∑
m=1

[
1
N

N∑
i=1

ℓ(x , zmi )

]
,

where zmi – data sample (ami , bmi ), ℓ – loss of model with weights x
on sample zmi .

• Suppose we can partition the training data uniformly across devices.
E.g., if cluster or collaborative computing on open data is used. In
fact, we will further understand that it’s enough to put a large uniform
sample on just one device.

• This gives the similarity of the local loss functions.
• It is asserted that for any x :

∥∇2fm(x)−∇2f (x)∥ ≤ δ.
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Matrix Hoeffding

Theorem (Matrix Hoeffding)

Consider a finite sequence of random square matrices {Xi}Ni=1. Let the
matrices in this sequence be independent, Hermitian and of dimension d .
Suppose also that E[Xi ] = 0, and X 2

i ⪯ A2 is almost surely, where A is a
non-random Hermitian matrix. Then with probability 1 − p it is satisfied
that ∥∥∥∥∥

N∑
i=1

Xi

∥∥∥∥∥ ≤
√

8N∥A2∥ · ln (d/p).

Tropp J. An introduction to matrix concentration inequalities
Tropp J. User-friendly tail bounds for sums of random matrices
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Similarity parameter

• Local loss function:

fm(x) =
1
N

N∑
i=1

ℓ(x , zi ).

• ℓ – L-smooth (L-Lipschitz gradient), convex, twice differentiable
function (e.g., quadratic or logreg). Then we have ∇2ℓ(x , zi ) ⪯ LI for
any x and zi (here I is a unit matrix).

• Let us divide all data uniformly over all workers.
Xi =

1
N

[
∇2ℓ(x , zi )−∇2f (x)

]
. It is easy to check that all conditions

of Hoeffding inequality are satisfied for it, in particular, A2 = 4L2

N2 I .
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Similarity parameter: summary

• As a result, we have

∥∇2fm(x)−∇2f (x)∥ ≤ δ ∼ L√
N
.

• Conclusion: the larger the local sample size, the smaller the similarity
parameter (hessians are similar to each other).
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Method in general terms (not only for similarity)

• Consider Mirror Descent:

xk+1 = arg min
x∈Rd

(γ⟨∇f (xk), x⟩+ V (x , xk)) ,

where V (x , y) is the Bregman divergence generated by the strictly
convex function φ(x):

V (x , y) = φ(x)− φ(y)− ⟨∇φ(y); x − y⟩.

• Question: Which method do we have if φ(x) = 1
2∥x∥

2? Gradient
descent.
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Convergence in general terms

Definition (Relative smoothness and strong convexity)

Let φ : Rd → R is convex and twice differentiable. Let us say that the
function f is Lφ-smooth and µφ-strongly convex with respect to φ if for
any x ∈ Rd the following holds

µφ∇2φ(x) ⪯ ∇2f (x) ⪯ Lφ∇2φ(x),

or equivalently for any x , y ∈ Rd

µφV (x , y) ≤ f (x)− f (y)− ⟨∇f (y); x − y⟩ ≤ LφV (x , y).

Lu H. et al. Relatively-Smooth Convex Optimization by First-
Order Methods, and Applications
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Convergence in general terms: proof

• The optimality condition for the Mirror Descent step:

γ∇f (xk) +∇φ(xk+1)−∇φ(xk) = 0.

• From it (here x∗ – optimal point):

⟨γ∇f (xk) +∇φ(xk+1)−∇φ(xk), xk+1 − x∗⟩ = 0.

⟨γ∇f (xk), x
k+1 − x∗⟩ = ⟨∇φ(xk)−∇φ(xk+1), x

k+1 − x∗⟩
= V (x∗, xk)− V (x∗, xk+1)− V (xk+1, xk).

(the last statement is called the Pythagoras’ theorem for the Bregman
divergence and is verified by the definition)

• Small permutations give:

⟨γ∇f (xk), xk+1 − xk⟩+ V (xk+1, xk)

= V (x∗, xk)− V (x∗, xk+1)− ⟨γ∇f (xk), xk − x∗⟩.
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Convergence in general terms: proof

• Substitute γ = 1
Lφ

:

⟨∇f (xk), x
k+1 − xk⟩+ LφV (xk+1, xk)

=LφV (x∗, xk)− LφV (x∗, xk+1)

− ⟨∇f (xk), xk − x∗⟩.

• Let us use the definition of smoothness with respect to φ c x = xk+1,
y = xk :

f (xk+1)− f (xk) ≤ ⟨∇f (xk); xk+1 − xk⟩+ LφV (xk+1, xk).

• Combine the previous two:

f (xk+1)− f (xk) ≤ LφV (x∗, xk)− LφV (x∗, xk+1)− ⟨∇f (xk), xk − x∗⟩.
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Convergence in general terms: proof

• From the previous slide:

f (xk+1)− f (xk) ≤ LφV (x∗, xk)− LφV (x∗, xk+1)− ⟨∇f (xk), xk − x∗⟩.

• Relative strong convexity:

µφV (x∗, xk) ≤ f (x∗)− f (xk)− ⟨∇f (xk); x
∗ − xk⟩

• Sum the previous two together and shuffle them a bit:

f (xk+1)− f (x∗) ≤ (Lφ − µφ)V (x∗, xk)− LφV (x∗, xk+1).

• By virtue of the fact that x∗ – optimum:

V (x∗, xk+1) ≤
(

1 − µφ

Lφ

)
V (x∗, xk).
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Convergence in general terms

Theorem (Convergence of Mirror Descent)
Let φ and f satisfy the definition above, then Mirror Descent with step
γ = 1

Lφ
converges and is satisfied:

V (x∗, xK ) ≤
(

1 − µφ

Lφ

)K

V (x∗, x0).
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Method for the data similarity problem

• Mirror Descent:

xk+1 = arg min
x∈Rd

(γ⟨∇f (xk), x⟩+ V (x , xk)) ,

where the Bregman divergence of V (x , y) generated by the function
φ(x) (here we need to require that f1 is convex):

φ(x) = f1(x) +
δ

2
∥x∥2.

The function f1 is stored on the server.

• Question: What is the number of communications that occur in K
iterations of Mirror Descent? K of communications (number of ∇f
gradient counts), computing argmin requires only computations on
the server.
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gradient counts), computing argmin requires only computations on
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Method for the data similarity problem

Algorithm Mirror Descent for the data similarity problem

Input: Stepsize γ > 0, starting point x0 ∈ Rd , number iterations K
1: for k = 0, 1, . . . ,K − 1 do
2: Send xk to all workers ▷ server
3: for m = 1, . . . ,M in parallel do
4: Receive xk from server ▷ workers
5: Compute gradient ∇fm(xk) at xk ▷ workers
6: Send ∇fm(xk) to server ▷ workers
7: end for
8: Receive ∇fm(xk) from all workers ▷ server
9: Compute ∇f (xk) =

1
M

∑M
m=1 ∇fm(xk) ▷ server

10: xk+1 = argminx∈Rd (γ⟨∇f (xk), x⟩+ V (x , xk)) ▷ server
11: end for

Aleksandr Beznosikov Local Methods 17 April 2024 27 / 52



Convergence for the data similarity problem: proof

• Recall that convergence is defined in terms of constants from the
relation:

µφ∇2φ(x) ⪯ ∇2f (x) ⪯ Lφ∇2φ(x),

• In our case:

µφ

(
δI +∇2f1(x)

)
⪯ ∇2f (x) ⪯ Lφ

(
δI +∇2f1(x)

)
• Let us find Lφ:

∥∇2f1(x)−∇2f (x)∥ ≤ δ ⇒ ∇2f (x)−∇2f1(x) ⪯ δI

⇒ ∇2f (x) ⪯ δI +∇2f1(x) ⇒ Lφ = 1.
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Convergence for the data similarity problem: proof

• Let us find µφ. From the strong convexity of f :

µI ⪯ ∇2f (x) ⇒ δI ⪯ 2δ
µ
∇2f (x)− δI .

• From ∥∇2f1(x)−∇2f (x)∥ ≤ δ we have:

∇2f1(x)−∇2f (x) ⪯ δI .

• Combining the previous two points:

∇2f1(x)−∇2f (x) ⪯ 2δ
µ
∇2f (x)− δI .

• And we get

∇2f1(x) + δI ⪯ 2δ + µ

µ
∇2f (x) ⇒ µφ =

µ

2δ + µ
.
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Convergence for the data similarity problem: theorem

Theorem (Convergence for the data similarity problem)
Let f be strongly convex, f1 be convex, and ℓ be smooth, and
φ(x) = f1(x) +

δ
2∥x∥

2, then Mirror Descent with step γ = 1 converges and
is satisfied:

V (x∗, xK ) ≤
(

1 − µ

µ+ 2δ

)K

V (x∗, x0).

• This means that if we want to achieve an accuracy ε (V (x∗, xK ) ∼ ε),
then we need to

K = O
([

1 +
δ

µ

]
log

V (x∗, x0)

ε

)
communications.

Hendrikx H. et al. Statistically Preconditioned Accelerated
Gradient Method for Distributed Optimization
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How it works

• Problem: ResNet-18 on CIFAR-10.

Figure: Comparison of Mirror Descent (ProxyProx) with SOTA optimizers on
non-distributed problems.

Woodworth B. et al. Two Losses Are Better Than One: Faster
Optimization Using a Cheaper Proxy
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Research questions: acceleration

• Estimate on the number of communications under data similarity:

K = O
([

1 +
δ

µ

]
log

1
ε

)
.

• Estimate on the number of communications for Centralized
Distributed Gradient Descent:

K = O
(
L

µ
log

1
ε

)
.

• Given that δ can be small, we see the improvement.
• But there’s also the distrbuted version of Accelerated Gradient

Method that gives estimate:

K = O

(√
L

µ
log

1
ε

)
.

• It is not clear which is better. Is it possible to accelerate the method
for the problem with data similarity?
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Research questions: extension

• We look at the story with similarity only for minimization problems,
but there are other classes of problems.

• The hessian similarity can be rewritten as δ-smoothness of f − fi :

∥∇f (x)−∇fi (x)−∇f (y) +∇fi (y)∥ ≤ δ∥x − y∥ ∀x , y ∈ Rd .

• Let us consider the variational inequality problem:

Find z∗ ∈ Z such that ⟨F (z∗), z − z∗⟩ ≥ 0, ∀z ∈ Z,

where F : Rd → Rd is some operator.
• Minimization is also a VI with F (z) := ∇f (x). Also saddle point

problem (minx maxy g(x , y)) is a VI with
F (z) := (∇xg(x , y),−∇yg(x , y)).

• Make sense to consider distributed VIs under the following assumption:

∥F (x)− Fi (x)− F (y) + Fi (y)∥ ≤ δ∥x − y∥ ∀x , y ∈ Rd .
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Research questions: break lower bounds

• The lower bounds say we achieve optimality and there’s nothing more
to do here.

• Question: Is the Nesterov’s method always optimal? No! E.g., if we
consider the specificity that the target function can be of the sum

species f (x) = 1
n

n∑
i=1

fi (x).

• Katyusha has the following upper estimate of convergence (oracle

complexity on the call fi ): O
([

n +
√

n L
µ

]
log 1

ε

)
.

Allen-Zhu Z. Katyusha: the first direct acceleration of stochas-
tic gradient methods

• Upper bound on oracle complexity for the Nesterov’s method is
O
(
n
√

L
µ log 1

ε

)
.

• Let us add specificity in communications, break out the lower bounds
and get an even faster method.

Aleksandr Beznosikov Local Methods 17 April 2024 34 / 52



Research questions: break lower bounds

• The lower bounds say we achieve optimality and there’s nothing more
to do here.

• Question: Is the Nesterov’s method always optimal?

No! E.g., if we
consider the specificity that the target function can be of the sum

species f (x) = 1
n

n∑
i=1

fi (x).

• Katyusha has the following upper estimate of convergence (oracle

complexity on the call fi ): O
([

n +
√

n L
µ

]
log 1

ε

)
.

Allen-Zhu Z. Katyusha: the first direct acceleration of stochas-
tic gradient methods

• Upper bound on oracle complexity for the Nesterov’s method is
O
(
n
√

L
µ log 1

ε

)
.

• Let us add specificity in communications, break out the lower bounds
and get an even faster method.

Aleksandr Beznosikov Local Methods 17 April 2024 34 / 52



Research questions: break lower bounds

• The lower bounds say we achieve optimality and there’s nothing more
to do here.

• Question: Is the Nesterov’s method always optimal? No! E.g., if we
consider the specificity that the target function can be of the sum

species f (x) = 1
n

n∑
i=1

fi (x).

• Katyusha has the following upper estimate of convergence (oracle

complexity on the call fi ): O
([

n +
√

n L
µ

]
log 1

ε

)
.

Allen-Zhu Z. Katyusha: the first direct acceleration of stochas-
tic gradient methods

• Upper bound on oracle complexity for the Nesterov’s method is
O
(
n
√

L
µ log 1

ε

)
.

• Let us add specificity in communications, break out the lower bounds
and get an even faster method.

Aleksandr Beznosikov Local Methods 17 April 2024 34 / 52



Another look at Mirror Descent• Mirror Descent with γ = 1:

xk+1 = arg min
x∈Rd

(⟨∇f (xk), x⟩+ V (x , xk)) ,

with the Bregman divergence V (x , y), generated by the function φ(x):

φ(x) = f1(x) +
δ

2
∥x∥2.

• Substitute φ(x):

xk+1 = arg min
x∈Rd

(
f1(x) + ⟨∇f (xk)−∇f1(xk), x⟩+

δ

2
∥x − xk∥2

)
.

• Or a little differently:

xk+1 = arg min
x∈Rd

(
f1(x) +

δ

2

∥∥∥∥x −
(
xk −

1
δ
(∇f (xk)−∇f1(xk))

)∥∥∥∥2
)
.

• Question: What method does it look like?
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Another look at Mirror Descent

• Proximal Gradient Method for the composite problem g1(x) + g2(x):

xk+1 = arg min
x∈Rd

(
γg2(x) +

1
2
∥x − (xk − γg1(xk))∥2

)
.

• The argmin problem at each iteration can be solved inexactly somehow
by a numerical method (e.g., by Gradient Descent or Nesterov’s
method). The peculiarity of such a method is that ∇g1 is called much
less frequently than ∇g2. This kind of algorithms for composite
problems that devide oracle complexities are sometimes called slidings.

• Usually, this kind of algorithms are proposed for composite problems
of the form: convex + convex.

• In our case, g1 = f − f1, g2 = f1. And this is the problem of the form:
non-convex + convex = convex.
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Extension to VIs

• We consider the following problem:

Find z∗ ∈ Z such that ⟨F (z∗), z − z∗⟩ ≥ 0, ∀z ∈ Z,

where F : Rd → Rd is some operator.
• As before, the problem is shared among M computing nodes, each

device m has access only to its own operator Fm:

F (z) :=
1
M

M∑
m=1

Fm(z).

• We assume that F is µ-strongly monotone, F1 is monotone and
F − F1 is δ-Lipschitz.
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Extension to VIs: idea

• Optimal methods for VIs with Lipschitz operator are different from
those for smooth minimization problems.

• We need to base on specific methods, e.g., ExtraGradient, Tseng’s etc.
• And also use idea of sliding. Again: we need sliding for

non-monotone+monotone=monotone.
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Extension to VIs: methodAlgorithm Star Min-Max Data Similarity Algorithm

Input: Stepsize γ, accuracy e, starting point z0 ∈ Z, z0
m = z0, for all

m ∈ [M], number of iterations K
1: for k = 0, 1, . . . ,K − 1 do
2: for m = 1, . . . ,M in parallel do
3: Compute Fm(z

k) and sends it to server ▷ workers
4: end for
5: Compute vk = zk − γ ·

(
F (zk)− F1(z

k)
)

▷ server
6: Find uk , s.t. ∥uk − ûk∥2 ≤ e, where ûk is solution of ▷ server

⟨γF1(û
k) + ûk − vk , ûk − z⟩ ≤ 0, ∀z ∈ Z

7: Update zk+1 = projZ
[
uk + γ · (F (zk)− F1(z

k)− F (uk) + F1(u
k))
]

and send zk+1 to workers ▷ server
8: end for

Beznosikov A. et al. Distributed Saddle-Point Problems Under
Similarity
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Convergence

• If we want to achieve an accuracy ε (∥zK − z∗∥2 ∼ ε), then we need to

K = O
([

1 +
δ

µ

]
log

∥z0 − z∗∥2

ε

)
communications.

• Is optimal? For minimization no.
• But for VIs the lower bounds on communications are

K = Ω

([
1 +

δ

µ

]
log

∥z0 − z∗∥2

ε

)
.

• It gives optimality of the proposed method.
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How it works

• Problem: robust regression problem (regression with adversarial noise)
on synthetic data.

Figure: Comparison of Star Min-Max Data Similarity Algorithm (Alg. 1) with
Centralized Distributed ExtraGradient (EGD).
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Break lower bounds

• We discuss: more details about problem can give acceleration and
break lower bounds.

• We consider the setting, where we can compress transmitted
information.

Definition (Compression)

A stochastic operator Q : Rd → Rd is called compression if there exists a
constant q ≥ 1 such that

Q(z) = z , E∥Q(z)∥2 ≤ q∥z∥2, ∀z ∈ Rd .
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Break lower bounds: how to use compression• Direct compression is not super good even for minimization:

xk+1 = xk − γ · 1
M

M∑
m=1

Q(∇fm(xk)).

Question: why?

Variance of stochastic gradient does not tend to 0.
• The same problem as in classical SGD:

xk+1 = xk − γ∇fik (xk),

where ik is generated randomly. Question: how to solve? Variance
reduction:

xk+1 = xk − γgk with gk = ∇fik (xk)−∇fik (wk) +∇f (wk),

where wk is a reference point (coin flip update with small probability).
• The same idea can be used for the stochasticity from compression:

gk =
1
M

M∑
m=1

[Fm(xk)− Fm(wk)] + F (wk)
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Break lower bounds: what compression

• We need to take into account similarity.

Definition (Compression)
Assume that d ≥ M and d = qM, where q ≥ 1 is an integer. Let
π = (π1, . . . , πd) be a random permutation of {1, . . . , d}. Then for all
u ∈ Rd and each i ∈ {1, 2, . . . ,M} we define

Qm(u) = M ·
∑qm

j=q(m−1)+1uπj eπj .
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Break lower bounds: idea

• Sliding
• Specific methods for VIs
• Variance reduction to deal with compression
• Permutation compression
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Break lower bounds: method

Beznosikov A. et al. Similarity, Compression and Local Steps:
Three Pillars of Efficient Communications for Distributed Vari-
ational Inequalities
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Convergence

• Method without compression needs

K = O
([

1 +
δ

µ

]
log

∥z0 − z∗∥2

ε

)
communications.

• New method without compression needs

K = O

([
M +

δ
√
M

µ

]
log

∥z0 − z∗∥2

ε

)
communications.

Question: which better?

In terms of communications, the basic is
better, but by new method we transmitted M times less. And for new
method complexity in terms of transmitted information is

K = O
([

1 +
δ

µ
√
M

]
log

∥z0 − z∗∥2

ε

)
communications.

√
M times better than for the basic method!

• Lower bound gives optimality of the proposed method.
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How it works

• Problem: robust regression on different data.

Figure: Comparison of Three Pillars Algorithm with SOTA optimizers for
distributed saddle point problems.
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Acceleration and optimal algorithm

• Long history:

Aleksandr Beznosikov Local Methods 17 April 2024 49 / 52



Optimal algorithm
For the problem:

f (x) = g1(x) + g2(x),

where g1 = f − f1 и g2 = f1.

Algorithm Accelerated Extragradient

Input: Stepsizes γ and θ, momentums α, τ , starting point x0 = x f0 ∈ Rd ,
number of iterations K

1: for k = 0, 1, 2, . . . ,K − 1 do
2: xgk = τxk + (1 − τ)x fk
3: x fk+1 ≈ arg min

x∈Rd

[
⟨∇g1(x

g
k ), x − xgk ⟩+

1
2θ∥x − xgk ∥

2 + g2(x)
]

4: xk+1 = xk + ηα(x fk+1 − xk)− η∇g(x fk+1)
5: end for

Kovalev D. et al. Optimal Gradient Sliding and its Application
to Distributed Optimization Under Similarity
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Three ideas

• 1 idea – Nesterov acceleration.
• 2 idea – Sliding.
• 3 idea – Extragradient/Tseng’s method = method for VIs.
• first two ideas are clear, but the third idea is the key.
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How it works

• Problem: logistic regression on different data.

Figure: Comparison of Accelerated ExtraGradient (Alg. 1) with SOTA
optimizers for distributed minimization problems under data similarity.

Aleksandr Beznosikov Local Methods 17 April 2024 52 / 52


	Intro
	Local methods
	Data similarity

