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Annotation  

Russian 
В данном проекте планируется изучить все тонкости работы новых технологии в 

биоинформатике: одноклеточное секвенирование(single-cell RNA sequencing, scRNA-seq) 

глиом с применением пакета Seurat.  

Глиома — это общий термин для группы опухолей, которые возникают из глиальных клеток 

головного и спинного мозга.  Глиомы могут различаться по типу глиальных клеток, из 

которых они происходят, и по степени злокачественности. 

После освоения технологии одноклеточного секвенирования, в данной работе необходимо 

будет опробовать данный метод на реальных данных по опухоли мозга. 

С помощью этого проекта и проделанного анализа, мы сможем сделать выводы о том, какие 

гены активны в каждой клетке, выявить различные клеточные подтипы и как клетки 

взаимодействуют друг с другом и с их микроокружением. 

English 
In this project, it is planned to study all the subtleties of the work of new technologies in 

bioinformatics: single-cell sequencing (single-cell RNA sequencing, scRNA-seq) of gliomas using 

the Seurat package.  

Glioma is a general term for a group of tumors that arise from glial cells in the brain and spinal 

cord.  Gliomas can differ in the type of glial cells from which they originate and in the degree of 

malignancy. 

After mastering the technology of single-cell sequencing, in this work it will be necessary to test 

this method on real data on a brain tumor. 

With the help of this project and the analysis done, we will be able to draw conclusions about which 

genes are active in each cell, identify different cell subtypes and how cells interact with each other 

and with their microenvironment. 
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Key terms 
• Single-cell sequencing - ScRNA-seq 

• Seurat 

• glioma 

• clustering 

• tumor microenvironment 

• Ligand-receptor iteractions 
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Introduction  

Relevance 
Single-cell sequencing is the latest approach in the study of brain tumors, which is of great 

importance for understanding the mechanisms of disease development and progression. This 

method opens up new prospects for the development of targeted therapeutic strategies and improved 

diagnosis. 

The study of brain tumors at the cellular level makes a significant contribution to translational 

medicine and molecular oncology, providing new data for: the development of personalized 

treatment approaches that take into account the genetic heterogeneity of the tumor and its 

interaction with the microenvironment, as well as to improve diagnostic tools to more accurately 

determine the stages of tumor development and predict the response to treatment. 

Thus, single-cell sequencing is a key tool in the fight against brain tumors, opening up new 

horizons for health science and providing hope for more effective treatment of patients. 

Goals and objectives  
In this project, we plan to study the single-cell sequencing method in bioinformatics. Our goal is to 

apply the technology to the analysis of brain tumor data. We will focus on single-cell sequencing of 

a single tumor sample to identify the active genes in each cell and identify different cellular 

subtypes in brain tumor samples. This project will help us draw conclusions about cellular 

heterogeneity and interactions in the selected brain tumor and data on it. 
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Data description and preprocessing  

In this work, we selected data in the form of a single sample of high-grade glioma. Gene Expression 

Omnibus (GEO) was used as a resource. High expression of the IDH gene was found in this sample.  

Using the R package Seurat, we read the data and created a SeuratPackage from it. Then we carried 

out quality control (QC). This stage is necessary to ensure the reliability and accuracy of the 

analysis of single-cell RNA sequence (scRNA-seq) data. scRNA-seq data may contain noise and 

artifacts due to technical limitations and biological variability. QC helps to filter out low-quality 

cells and get rid of data that can distort the results of the analysis. The main QC parameters include 

the number of unique genes (nFeature_RNA), the total number of reads (nCount_RNA) and the 

percentage of mitochondrial genes (percent.mt ), which may indicate damaged or dying cells. 

Before QC, many highly variable genes are isolated, including noise. After QC, only truly variable 

genes remain, which improves the accuracy of the analysis. 

Results 

After QC, the data becomes cleaner and more homogeneous, which increases the accuracy of the 

analysis of single-cell RNA sequences. 
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Clusterization 
Next, we clustered the processed SeuratObject. We conducted clustering of single-cell RNA 

sequencing data following a specific sequential process that included several key steps. 

At first, the data was normalized to eliminate technical artifacts and bring them to a comparable 

appearance. This is important to ensure the accuracy of subsequent analysis, as normalization helps 

to balance gene expression between cells. 

Then we selected highly variable genes that show the greatest variability in expression. This helps 

to focus on biologically significant signals and eliminate less informative genes. In this case, 7,500 

of the most variable genes were selected. 

After that, we visualized the selected highly variable genes to see their distribution and make sure 

that the choice was correct. The top 10 most variable genes were marked for additional analysis.The 

next step was to scale the data. Scaling aligns the values of gene expression, which makes them 

more comparable with each other and prepares data for principal component analysis (PCA). 

Next, we performed a principal component analysis (PCA) to reduce the dimensionality of the data. 

PCA helps to identify the main sources of variation in the data, which facilitates subsequent 

clustering. 

We visualized the results of the PCA, including graphs of the loads of the main components, a heat 

map for the first main component and an Elbow raft. The Elbow raft was used to determine the 

optimal number of components to be considered in the analysis. 

After that, we built a graph of the nearest neighbors using the K-Nearest Neighbors (KNN) 

algorithm. Based on this graph, we performed clustering using the Louvain algorithm to determine 

cell clusters. Clusters were obtained at different resolution levels (different levels of detail), in order 

to choose the most appropriate clustering level, a resolution of 0.03 was selected. 

At the final stage, we used the UMAP (Uniform Manifold Approximation and Projection) method to 

further reduce the dimensionality of the data and visualize clusters in 2D space. This allowed us to 

visually see the data structure and the relationships between clusters. (Fig.1) 

As a result, we get four clusters, which we plan to annotate later. 
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Fig. 1a 

Fig. 1b 
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Defining cell types  
After clustering the cells, it was necessary to determine what type of cells each cluster is. To do this, 

we combined two technologies: the differential expression method and manual detection by key 

markers. 

Differential expression 

First of all, we used differential expression. 

We perform a search for marker genes for all clusters in our dataset. Only highly variable genes are 

used for this. We are looking for genes that are expressed higher in a certain cluster compared to the 

rest of the clusters. In this case, the marker gene should be expressed in at least 25% of the cells in 

the cluster, and the threshold for the logarithmic fold of expression change is set at 0.25. 

After identifying the marker genes, we filter the results to leave only those genes that have a 

logarithmic fold of expression change greater than 1. This allows us to identify the genes with the 

most significant changes in expression. For each cluster, we select the top 15 such marker genes, 

which gives us the most informative genes for further analysis. 

At the last stage, we create a heat map to visualize the expression of these marker genes in various 

clusters. The heat map allows you to visually see which genes are markers for each cluster, and how 

they are expressed in different groups of cells. To simplify perception, the legend on the heat map 

has been removed. 

Using differential expression, we saw the most expressive genes in each cluster and, using this 

information, made an assumption to which cell type each cluster corresponds:Zero cluster: All 

expressed genes are different and belong to different cell types, making it impossible to clearly 

identify the cluster. Presumably, this cluster consists of cancer cells. (Fig.2) 

First cluster: FCGR3A, AIF1 (also known as IBA1): These markers are typically associated with 

macrophages. 

Second cluster: CD3D, CD3E, TRAC, TRBC2: These are markers for immune cells. 

Third cluster: MAG, MOG, CLDN11: These are markers for oligodendrocytes. 

Key markers 

Then we decided to identify the null cluster. Since we assume that cluster zero is a tumor, and more 

specifically a high-grade glioma, I found well-known cancer markers on the Network of Cancer 

Genes(NCG) website and highlighted them on the cluster map. In addition to cancer markers, I 

highlighted markers for oligodendrocytes, t cells, and macrophages/macroglia to make sure that  

they express only in the initially declared clusters. I got the following results.  
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Fig. 2 

We see that in the zero cluster such oncomercers as MET, PDGFRA, CDK4, NF1, KRAS are 

indeed overexpressed, which confirms our hypothesis that these are cancer cells (Fig. 1b). 

Moreover, it was noticed that genes such as GFAP (astrocyte marker) and OLIG1-2 

(oligodendrocyte markers) are also vividly expressed in the zero cluster, which allows us to assume 

that this is not just a glioma, but classify it as an astrocytoma or oligodendrinoma.  

I also noticed several interesting markers that are expressed simultaneously in cancer cells and 

immune cells, for example CCND1-2-3. Presumably, these markers can affect the tumor. These 

features will be discussed in more detail later in the paper.  

So, we clustered the data, determined what type of cells each cluster has. Four types of cells were 

obtained: tumor cells, macrophages, immune cells and oligodendrocytes. 

Researching each cluster individually  

 Next, I decided to take a closer look at large clusters in order to more clearly see the differentiation 

of cells within each cluster. I did the same with each cluster as with the common object earlier: I 

clustered, determined the most expressed genes in each subcluster using differential expression and 

tinting the most well-known markers manually, and then determined the cell type of each subcluster. 
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Macrophages  

First of all, it was especially important to differentiate macrophages. Macrophages in the context of 

cancer play a dual role: M1 macrophages and M2 macrophages. 

M1 macrophages have anti-tumor properties. They are activated by pro-inflammatory signals, 

destroy cancer cells and inhibit their growth. The presence of M1 macrophages in the tumor is 

usually associated with a good prognosis for the patient. 

M2 macrophages, on the contrary, support tumor progression. They are activated by anti-

inflammatory signals, promote the growth of new blood vessels, suppress the antitumor immune 

response and promote metastasis. A high number of M2 macrophages in the tumor is associated 

with a poor prognosis.Thus, M1 macrophages suppress cancer, and M2 macrophages support it. 

There are also other types of macrophages (M3/M0), but the most significant in the context of 

cancer was to identify M1-M2. 

The macrophage cluster was divided into three subclusters, using markers they were identified as 

M1, M2, M3 macrophages, respectively. Among the most expressed genes, we were most interested 

in the MIF and PTEN genes, since they were the most expressive in both immune and cancer 

clusters (fig.3), and according to the results of other studies, it turned out that assumptions had 

already been made about the potential effect of these markers on cancer, which our study also 

confirms. 

Immune cells 

Then it was important to separate the immune cells - the main goal was to find T cells and B cells, T 

cells recognize and destroy cancer cells, whereas B cells can produce antibodies against tumor 

antigens, contributing to the immune response to cancer.  

The immune cell subcluster also split into three subclusters, which we subsequently identified as T-

cells, B-cells, and Plasma cells. After this analysis, we were interested in BTG1 and TNFAIP3 

(fig.3) markers, since they were the most expressive in both immune and cancer clusters, and 

according to the results of other studies, it turned out that assumptions had already been made about 

the potential effect of these markers on cancer, which our study also confirms. 
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Fig.  3 

Cancer cells 

Then I found it interesting to cluster cancer cells to see the differentiation of cell functions within 

the tumor. This cluster is divided into 6 subclusters. Then we gave a name to each subcluster 

corresponding to the description of the functions of this cluster. 

Cluster 0: This cluster is characterized by high expression of genes related to oligodendrocytes 

(OLIG1, OLIG2), neuronal differentiation (SOX4, SOX8), and neuronal activity (GRIA2, BCAN). 

These cells retain some properties of oligodendrocytes, participating in intercellular communication 

and axon support. We named this cluster «OPC» - precursors of oligodendrocytes. 

Сluster 1: This cluster includes cells with astrocytic or glial properties, indicated by genes GFAP 

and VIM. Genes IGFBP7 and CLU are involved in cell protection and survival, while genes ID3 

and S100A10 regulate cell differentiation and interactions. We named this cluster «Glial Support». 

Cluster 2: This cluster consists of actively proliferating cells with high expression of genes related 

to cell proliferation and division (TOP2A, TK1, BIRC5). Genes CENPK and CENPM are involved 

in mitosis, while genes CA12 and OASL are associated with metabolic processes and cell 

protection. We named this cluster «Active Proliferation». 
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Cluster 3: This cluster is characterized by cells adapted to stress conditions and inflammatory 

responses. High expression of genes related to iron metabolism (FTH1, FTL), inflammation (IL32, 

NDRG1), and cell protection (SQSTM1, OSGIN1). We named this cluster «High Survival and 

Inflammation». 

 

Cluster 4: This cluster includes cells with high expression of genes regulating cell adhesion and 

migration (RAB13, LPP), lipid metabolism (APOE), and immune interactions (CD86, ADAR). 

These cells are actively involved in cell migration and intercellular interactions. We named this 

cluster «Migration and Adhesion». 

 

Cluster 5: This cluster consists of cells with high expression of genes related to immune response 

and inflammation (HAVCR2, CLEC7A). Genes FCGR1B and LILRB4 are involved in 

phagocytosis and antigen presentation, while genes CYBB and RNASE6 regulate cellular stress and 

metabolism. We named this cluster «Immune Inflammatory Response». 

Then we combined all the subclusters and got a final map that includes all the subclusters (fig 4). 

Fig. 4 
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Cell-cell communications analysis  
 The purpose of the analysis is to investigate intercellular communication to understand the 

interactions between different cell types. This is important for studying the mechanisms of diseases, 

immune responses and cellular development. 

 In the analysis process using the CellChat R package, we created an object to analyze cell 

type-based communications, connected a human ligand-receptor database, isolated relevant 

interactions, identified overexpressed genes and interactions, reduced data dimensionality with 

PCA, calculated and filtered interaction probabilities, and finally visualized the networks of 

interactions between different cell types. 

 In the graph below that shows a network of intercellular communications, you can see the 

interactions between different cell types. M1 macrophages interact with T cells, B cells, M2 

macrophages, M3 macrophages and other cell types, with particularly strong and diverse 

connections to dendritic cells and oligodendrocytes. T cells interact with M1 macrophages, B cells, 

M2 macrophages and oligodendrocytes. B cells interact with T cells, M1 macrophages and M2 

macrophages. M2 macrophages interact with M1 macrophages, T cells, B cells and 

oligodendrocytes. Dendritic cells interact with M1 macrophages, M2 macrophages and 

oligodendrocytes. Oligodendrocytes interact with M1 macrophages, T cells, B cells, M2 

macrophages and dendritic cells. OPCs interact with glial cells involved in support and 

inflammatory response. Plasma cells interact with M1 macrophages and other immune cells. Glial 

support interacts with OPC, actively proliferating cells and cells involved in survival and 

inflammation (fig. 5) 

Fig. 5 
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Signaling networks 

Then we built a bubble diagram of interactions between different cell types, where signal sources 

(stromal cells) interact with target cells (tumor cells). On the vertical axis, various signaling 

molecules or ligands (for example, VCAM 1, TNFSF, TGFBI, etc.) involved in intercellular 

interactions (fig. 6). 

Fig.  6 
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From these bubble diagrams, we can see that the most active ligand-receptor pairs SPP1-CD44 and 

APOE-TREM2 - these pairs have the highest probability of communication. In addition, we can 

once again confirm the high communication between macrophages and cancer. In addition, a 

significant effect of the MIF - (CD74+CD44) pair on the "communication of cells" can be noted. 

Then we examined in more detail the effect of SPP1, MIF and APOE ligands on cellular 

communication, and in particular on glioma cells (fig. 7). 

Fig. 7 
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Using bubble diagrams and graphs of the signaling networks of these three genes, it can be 

concluded that they clearly significantly contribute to the communication of cancer and stromal 

cells, so it can be assumed that they affect the growth and development of tumors. For example, the 

ligand-receptor interaction of MIF - (CD74+CD44) is particularly pronounced in the interaction of 

M1-M2 macrophages on "Glial support". The SPP1-CD44 pair similarly affects not only the effect 

of stromal cells, not only on "Glial support" cells, but also other cancer subtypes obtained. The 

graph of the APOE gene signaling network revealed communication only between macrophages and 

the «Immune Inflammatory Response». 

16



Survival analysis 
Finally we investigated the clinical significance of increased expression of SP1, CD44, APOE and 

MIF, BTG1,  TNFAIP3 in glioma. To do this, we used Kaplan-Meier curves. 

Fig. 8 

We found that high SPP1, CD44 expression correlate with a shorter overall survival time of glioma 

patients (Fig. 8). Whereas high MIF, APOE expression correlate with a longer overall survival time 

of glioma patients. Such results regarding MIF and APOE are explicable with the protective 

immune functions of these genes.  The TNFAIP3 and BTG1 graphs showed that there was no 

significant difference in survival between the group where these genes were highly expressed and 

low. As for SPP1, CD44, it can be assumed that these genes have a positive effect on the growth and 

development of gliomas, since life expectancy with high expression of these genes is significantly 

reduced. 
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Conclusion 
Based on the results of this work, we studied and analyzed a sample of glioma and its 

microenvironment. The intercellular interactions within the tumor and the surrounding cells were 

studied. We have found markers that can potentially influence the development of glioma. 

Along with identifying the tumor's intracellular heterogeneity, we also discovered a number of 

novel glioma symptoms. Initially, we discovered that this tumor is primarily composed of Tam cells, 

with a relatively low ratio of T cells to B cells. Our findings suggested that these macrophages 

probably had an anticancer function in gliomas. Furthermore, this tumor has five distinct 

subpopulations of glioma cells found in it. We discovered that the induction of tumor cells is 

significantly influenced by SPP1/CD44 signaling. Specifically, it has been demonstrated that SPP 1/

CD44 signaling in the perivascular niche enhances the stem cell-like characteristics and radiation 

resistance of glioma cells. Furthermore, it has been demonstrated that elevated SPP-1 expression 

causes glioma-associated macrophage infiltration and is linked to a poor prognosis in individuals 

with glioma. In a similar vein, elevated CD44 expression has also been linked to a worse prognosis 

for glioma patients and has been shown to contribute to the disease's advancement. Thus, our 

findings along with those of other research highlight the significance of tumor cells and 

macrophages mediating targeted interaction of SPP-1/CD44 in the treatment of gliomas. 
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