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Tabular Deep Learning
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• Structured data with heterogeneous features


• Real-world applications in industry, science, medicine  

Tabular Data

• Universal and popular ML toolbox


• Tackles many problems beyond vanilla supervised ML


• Multi-table tasks


• Multimodal neural networks


• Generative modelling


• Etc


• Many research questions and opportunities 


Deep Learning



Research Recap



Architectures
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Comparison to XGBoost on the academic benchmark by Grinsztajn [4]

Revisiting Models [1] 
FT-Transformer 
• Protocols 

and baselines


• Transformer architecture 
adapted to tabular data

Feature Embeddings [2] 
MLP-PLR
• Embedding numerical features 

to ease the optimization


• A universally beneficial 
architectural component

TabR [3]

• A retrieval-based model for 
tabular data


• Strong performance on 
benchmarks


• More efficient than prior  
approaches

https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2203.05556
https://arxiv.org/abs/2307.14338


Tasks and Methods
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• Tabular data is often proprietary or private


• TabDDPM — diffusion model for tabular data generation


• Strong baseline and evaluation setup for the field 

Synthetic Data Generation [5]

• Simple pre-training strategies 
reconstruction, mask-prediction


• Trade training compute for performance


• Pre-training is beneficial on labeled data 
and smaller (10-100k) tables too

Pre-training [6]

https://arxiv.org/abs/2209.15421
https://arxiv.org/abs/2207.03208


New Benchmark



Let’s Look at The Academic Benchmarks
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All happy families datasets are alike; each unhappy dataset is unhappy in its own way.



Anecdotes

10

• Task is predicting the time that it takes to multiply two 
matrices


• Due to poor preprocessing, 3 out of 4 target variables are 
given with the features

SGEMM GPU kernel performance [7]

• The dataset (originally named ELEC2) contains 45,312 
instances dated from 7 May 1996 to 5 December 1998.


• Each example on the dataset has 5 fields, the day of week, 
the time stamp, the New South Wales electricity demand, the 
Victoria electricity demand. The scheduled electricity transfer 
between states and the class label


• The class label identifies the change of the price  
(UP or DOWN)

Electricity [8]

https://www.openml.org/search?type=data&sort=runs&id=44069


Academic Benchmarks

11

Datasets don’t handle time 
properly

>50%
“Problematic” Datasets

38%

Features available

~20
Small sample sizes 
Majority is bellow 100k samples

<1kk
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No benchmark beside TabReD focuses on temporal-shift based evaluation, less. 
OpenML based datasets have more quality issues


TabReD



Temporal shift 
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• GBDT’s are less robust to temporal shift


• Realistic evaluation setups are important for 
healthy progress



• A new benchmark with datasets, closer 
resembling real-world scenarios


• Sources: Kaggle and Yandex  
Eats, Maps, Weather, Lavka


• Datasets with 10M samples 
and feature-engineering  
(with up-to 1000s of features)


• All datasets have timestamps

Summary

• Performance differences are less 
pronounced (feature-engineering)


• Time-splits are important


• General Progress Transfers


• MLP-PLR and GBDTs - top-2 models

Experimental results
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