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Аннотация

Алгоритм Метрополиса-Гастингса позволяет получать выборку из сложного целевого

распределения, используя вспомогательное предлагающее распределение. Из предлагающе-

го распределения необходимо уметь семплировать напрямую, а так же уметь считать его

плотность во всех точках. Для моделирования предлагающего распределения можно ис-

пользовать генеративные модели, при этом для работы алгоритма необходимо вычислять

маргинальное правдоподобие модели для всех элементов выборки. Одним из возможных

вариантов является использование генративных моделей с аналитически вычислимым прав-

доподобием. Мы исследуем другой вариант — модели с не вычислимыи напрямую правдо-

подобием для моделирования предлагающего распределения и использование несмещённых

оценок их правдоподобия в вычислениях в алгоритме Метрополиса-Гастингса. Мы демон-

стрируем работоспособность нашего метода, исследуем ключевые факторы, влияющие на

его эффективность, и экспериментируем с масштабированием до высоких размерностей.

Abstract

The Metropolis-Hastings algorithm allows sampling from a given complex target distribu-

tions with known density through the use of an auxillary proposal distribution. The proposal

distribution has to allow direct sampling and probability density computation. Generative models

can be used to model the proposal distribution, however their marginal likelihood needs to be

computed for all generated samples to apply the algorithm. Using models designed to have an

analytically computable likelihood as the proposal is one option. We explore the other option —

models with untractable likelihood as the proposal and using unbiased estimates of their likeli-

hood in calculations in the Metropolis-Hastings algorithm. We deliver a proof of concept for our

method, analyze key factors influencing its effectiveness and experiment with scaling it to higher

dimensions.

Keywords

Markov chain Monte Carlo, Adaptive Monte Carlo, Metropolis-Hastings, Generative mod-

els, Variational autoencoders, Marginal likelihood estimation, Importance Sampling
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1 Introduction

Markov Chain Monte Carlo (MCMC) is a class of algorithms widely used in statistical

inference for extracting information and sampling from complex, possibly high-dimensioanl distri-

butions.[6] MCMC methods have been especially popular since the spread of affordable computers

in the 90s. Published in 1970, the famous Metropolis-Hastings (MH) algorithm[13, 8] specifically

is one of the most used MCMC methods today. Using an auxillary proposal distribution, it allows

generating samples from any target distribution, given only the target distribution’s unnormalized

density. Correctly choosing the proposal distribuion is critical for the algorithm’s performance.

The proposal distribution needs to be simple enough to allow direct sampling and close enough to

the target distribution. Metropolis-Hastings suffers with multimodal distributions (that is, distri-

butions with multiple regions of high probability density seperated by regions with low probability

density), as it is hard to find good proposal distributions. Adaptive Metropolis-Hastings[1] aims

to solve this problem by using statistical methods to choose the proposal distribution based on in-

formation about the target. It makes sense to try using proposal distributions based on generative

models. However, knowing the proposal distribution’s density is crucial to the Metropolis-Hastings

algorithm, but most complex enough generative models do not allow straightforward marginal like-

lihood calculation. This challenge can be overcome by either developing generative models with

tractable marginal likelihood or using estimates of the marginal likelihood based on the model

structure. While the former approach has been explored by various authors[5, 14], the latter

approach has not seen much attention. In this work we attempt to fill this gap by conducting an

experimental analysis.

2 The Metropolis-Hastings Algorithm

2.1 Formulation

In this work we will be dealing exclusively with the global proposal version of the Metropolis-

Hastings algorithm, which is described below. Suppose we have a target distribution with known

unnormalized density π(x) from which we wish to sample, and a proposal distribution with un-

normalized density η(x) from which we can sample. Due to a detailed balance equation, if the

support of the target distribution lies completely within the support of the proposal distribution,

the algorithm will generate a Markov chain of samples with an equilibrium distribution equal to

the target distribution[8].
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Algorithm 1 Global Proposal Metropolis-Hastings
Input: Target, Proposal, N
Result: samples
samples ← ∅
last ← Proposal.Sample()
for i=1 to N do

s ← Proposal.Sample()
currentRatio ← Target.DensityAt(s) / Proposal.DensityAt(s)
lastRatio ← Target.DensityAt(last) / Proposal.DensityAt(last)
α ← (currentRatio / lastRatio) ∧ 1
β ← sample from uniform U(0,1)

if β < α then
last ← s

end if
samples.Append(last)

end for

2.2 Challenges

Even though ∀x : η(x) = 0 → π(x) = 0 is the only requirement for the equilibrium

distribution to match the target, geometric convergence is guaranteed only if there is an upper

bound on the value of π(x)
η(x)

[12]. If in a certain high density region of π the density of η is very low,

then it is possible that 99.9% of Metropolis-Hastings chains of a given length will not contain any

samples from that region, effectively ignoring it and yielding highly skewed samples 99.9% of the

time (poor concentration). This is why it is crucial to make sure that high probability density

regions of π(x) correspond to more or less probable regions of η(x). Higher Kullback-Leibler

divergence DKL(π∥η) = Ex∼π

[
π(x)
η(x)

]
values correspond to worse proposal distributions.

2.3 Adaptive Modifications

In adaptive Metropolis-Hastings the proposal distribution is not determined in advance,

but is selected based on the target distribution and possibly changes over time. This procedure

can be as simple as tuning the covariance of a gaussian proposal distribution based on the sample

covariance of previously generated Metropolis-Hastings samples[15]. A more complex option is to

let the proposal distribution be the learned distribution of a generative model. To use a generative

model together with the Metropolis-Hastings algorithm we need to be able to compute its marginal

likelihood. Prior works have experimented with using generative models specifically designed to

allow analytic computation of the likelihood, such as normalizing flows[5, 11] and Boltzmann

generators[14]. However, the design constraint of tractable marginal likelihood can reduce model

expressivity. This leads us to propose using more powerful, mainstream generative models with
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untractable marginal likelihood to model proposal distributions. We can leverage these models’

greater flexibility and the amount of literature on them, but this comes at the cost of having

to deal with marginal likelihood estimates, which can have high variance, be computationally

expensive, or both.

3 Marginal Likelihood Estimation

3.1 Generative Models

There are many works on estimating the marginal likelihood (ML) of generative models[7].

No least because the ML of a sample is a measure of how well that sample is modeled. However,

estimating the ML in general without using information about the structure of a model is hard.

Kernel density estimation can be practical up to dimension 3, but fail spectacularly in high

dimensions.

3.2 Variational Autoencoders

Variational autoencoders[9] are a class of latent-variable generative models that consist of a

decoder pθ(x|z) defining the conditional probability and an encoder qϕ(z|x) attempting to approx-

imate the intractable posterior pθ(z|x). The naive Monte Carlo estimate 1
N

∑N
i=1 pθ(x|zi), zi ∼

pθ(z) performs horribly, however we can use the encoder to build better Monte Carlo estimates

using, for example, importance sampling or annealed importance sampling[16]. The importance

weighted (IW) ML-estimator is discussed in [2]. The closer qϕ is to the true posterior pθ(z|x) the

less variance in the estimators.

4 Inexact Metropolis-Hastings

4.1 Algorithm Formulation

Suppose we have a target distribution with unnormalized density π(x) and a sample X
i.i.d.∼

f(x) from that distribution. The algorithm, which we call Inexact Metropolis-Hastings, is as

follows:

• Train a generative model M to model π using X as training data. The trained M defines

a new distribution pM(x) — the distribution of samples generated by the model.

6



• Run the vanilla Metropolis-Hastings algorithm with proposal pM(x) and target π(x), except

in calculating the acceptance probability of each sample use the value of a marginal likeli-

hood estimator for M, since the exact value of pM(x) is not known. Proposal samples are

generated byM

If the size of the training sample X is large enough and the model M is powerful enough, pM

can be arbitrarily close to π. However, there are situations when we are not able to obtain large

training samples, and that is when this algorithm is needed. The most important part is that the

M can generally cover all the high dimensional regions of π, which can not be covered adequately

by a Gaussian or other non-adaptive proposal.

4.2 Applicability

For the algorithm to be applicable, we need to know the target’s unnormalized density,

as well as have a training sample from the target distribution. There are several scenarios in

which we can frame the problem in this way. First of all, given only the target density we can

use computationally expensive local MCMC methods such as (Metropolis adjusted) Langevin

dynamics[3] to generate the initial training sample for our generaive model. Our method can

also be used to sample from Energy-based models[4]. Finally, it goes without saying that the

density and training samples are also available for most synthetic distributions, however running

our algorithm on them provides no practical merit.

Using Inexact Metropolis-Hastings makes sense for complex multimodal distributions, for

which it is hard to find a suitable non-adaptive proposal distribution, and for which local MCMC

algorithms have very high mixing times.

4.3 Estimate Outliers

The Metropolis-Hastings algorithm works by accepting or rejecting samples from the pro-

posal based on their target to proposal density ratio (in our case π(x)
pM(x)

). This ratio is the key value

for every element of the proposal, determining how many copies of the element will be included

in the resulting sample. It is generally useful to think in terms of this quantity. An important

observation is that under- and overestimation of the density ratio have completely different effects

on the resulting Markov chain. This is best illustrated through an example. Suppose the ML

estimator we are using has a 1% chance of overestimating the ML of a sample by a factor of 1000.

Then for 1% of the samples we underestimate the density ratio by a factor of 1000 and surely

reject it. This has a marginal effect on the MH sample quality. Now suppose the ML estimator
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underestimates the ML by a factor of 1000 for 1% of the samples. Then, as soon as the first

overestimation of a density ratio happens the Markov chain will be derailed for about the next

1000 iterations. As a result, the MH algorithm will be spending 90% of the time rejecting samples

due to flukes. This is why density ratio overestimation is dangerous for algorithm performance.

We provide 2 ways to deal with it.

In the implementation of Inexact Metropolis-Hastings samples from M are generated by

batches and ML estimates are also evaluated by batches. This is done to leverage the parallel

processing capabilities of modern computers. Generating samples and evaluating ML estimates

one by one as the Markov chain is being generated would be prohibitively slow. If density ratio

overestimation is due to the general noisiness of the ML estimator, we can alleviate its effect by

instead calculating the approximate ML values a set multiple amount of times before running the

vanilla MH algorithm, and using a picking randomly one of the estimate values for each sample

at each step of MH. However, it may be the case that the density ratio is overestimated only for

a specific proposal samples (this can happen due to poor training of the generative model). If so,

multiple evaluations will not help and the proposal samples have to be filtered by a maximum

value of the density ratio before running the MH algorihtm. We found that at least 5 estimate

evaluations and discarding 0.05% of samples with the highest density ratio noticably improved

inexact Metropolis-Hastings performance.

5 Experiments

5.1 Metrics

The metric we use to measure similarity between distributions is the sliced Wasserstien

metric. For two distributions is calculated by taking the mean value of the Wasserstein metric

between distribution projections for a fixed number of random 1D projections.

5.2 Low-Dimensional Synthetic Examples

Here as out base generative model we use a variational autoencoder with latent dimension

2, 4 hidden fully-connected layer of 32 neurons each. We estimate marginal likelihood using 512-

sample importance weighting. Inexact Metropolis-Hastings improves the base VAE performance

and beats non-adaptive Metropolis-Hastings on all 2D examples that we tried. See figures 5.1 and

5.2.
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Figure 5.1: Performance of different algorithms on a 5x5 Gaussian lattice target

Figure 5.2: Performance of different algorithms on a 40-component mixture of Gaussians target
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Figure 5.3: Scaling of Inexact Metropolis-Hastings up to 16 dimensions

5.3 Scaling with Dimensionality

Using a variational autoencoder with 4 hidden layers of 64 neurons each and latent dimen-

sion equal to the data dimensionality as our base model, with 512-sample importance weighting

for marginal likelihood estimation, we show that Inexact Metropolis-Hastings beats the base gen-

erative model and the "cutoff by target likelihood" benchmark in dimensions up to 16. See figure

5.3

6 Further Research Directions

Using different variational autoencoders architectures with more expressive posterior esti-

mates, such as inverse autoregressive flows[10], could significantly improve the quality of generated

samples. This is due to the fact that, as mentioned in 3.2, the quality of the posterior approx-

imation qϕ seriously affect the quality of VAE likelihood estiamtes. It would also be natural

to try marginal likelihood estimates other than the importance weighted estimate for the VAE,

however this lies beyond the scope of the current work. For future work we are exploring ap-

plying Metropolis-Hastings correction to models other than the variational autoencoder, which

includes finding suitable marginal likelihood estimators for these models and experimenting with

different datasets. One other possible extension of this work is a fully adaptive version of Inex-

act Metropolis-Hastings, meaning fine-tuning the proposal model on generated samples while the

algorithm is running.
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7 Conclusion

In this work we have shown that Inexact Metropolis-Hastings can outpreform non-adaptive

Metropolis-Hastings and improve sample quality of variational autoencoders in dimensions as

high as 16 with relatively little effort. Overall, we feel like these results show the applicability

of Metropolis-Hastings correction to generative models with intractable marginal likelihoods and

warrant further research in this area.
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