Approximate Metropolis-Hastings Marginal Likelihood Estimation
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Figure 1. Importance Weighted Marginal Likelihood Estimates Based on Different Numbers of Samples

Performance of Intractable Generative Models can be Improved Using MCMC

Sample Quality is Improved Better Than Classic Metropolis-Hastings
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Figure 2. Demonstration on a 2D Mixture-of-Gaussians Target . ‘ .
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Figure 3. Approximate Metropolis-Hastings Improves Feature Distributions for a 128D Funnel Fisure 4. VAE-Proposal Approximate M-H Beats Flow-Proposal M-H on 128D Funnels



