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Abstract
In this paper we introduce Approximate
Metropolis-Hastings — a modification of the
Metropolis-Hastings algorithm that uses an esti-
mate of the proposal density when calculating ac-
ceptance probabilities instead of the exact density.
This allows using proposals based on generative
models with an intractable marginal likelihood,
such as variational autoencoders. We provide a
theoretical justification of the proposed algorithm
using perturbation theory for Markov kernels and
demonstrate its advantages using numerical ex-
periments.

1. Introduction
Suppose that we are given a target distribution π on a mea-
surable space (X,X ), and we aim to sample from π or to
estimate the integral of some function f : X → Rd with
respect to π. In many problems of interest, for example
in Bayesian statistics (Mira et al., 2013), π might only be
known up to a normalizing constant. In such cases the
standard solution is to apply an approach based on Markov
Chain Monte Carlo (MCMC) (Andrieu et al., 2003), a family
of algorithms which aim to construct a time-homogeneous
Markov chain {Xk}k∈N, such that the distribution of Xk

approaches π in a suitable metrics as k increases. Perhaps
the most well-known MCMC method is the Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970),
which allows sampling from any target distribution with
known unnormalized density. The main idea of the algo-
rithm is to generate candidates from a proposal distribution,
and then accept or reject each candidate. There is a vast
amount of literature dedicated to different modifications
of the Metropolis-Hastings procedure (Tjelmeland, 2004;
Liu et al., 2000; Andrieu et al., 2010). The choice of pro-
posal distribution is crucial, as the acceptance rate depends
on how similar the proposal and target are. For high di-
mensional target distributions selecting a good proposal is
challenging. More specifically, the acceptance rate tends
to approach 0 as the number of dimensions increases. This
motivates the development of adaptive modifications of the
Metropolis-Hastings algorithm, see (Gabrié et al., 2022;
Kobyzev et al., 2021), that choose the proposal distribu-

tion from some suitable parametric class. Some papers
have experimented with using generative models specifi-
cally designed to allow analytic computation of the marginal
likelihood, such as normalizing flows (Gabrié et al., 2022;
Kobyzev et al., 2021) and Boltzmann generators (Noé et al.,
2019), to model the proposal. However, the design con-
straint of having a tractable marginal likelihood can reduce
the expressivity of a model. It is therefore natural to try
using more powerful generative models with intractable
marginal likelihoods to as proposals. We can leverage these
models’ greater flexibility; however, this comes at the cost
of having to deal with marginal likelihood estimates, which
can have high variance and be computationally expensive.
In this paper we suggest an approach to adaptive MCMC
based on Variational Autoencoders (Kingma & Welling,
2013) and compare its performance with the traditional ap-
proach based on generative models with tractable marginal
likelihood.

2. Related Works
Parameterizing flexible probabilistic models with neural
networks is popular in the adaptive MCMC literature, see
(Song et al., 2017; Hoffman et al., 2019; Albergo et al., 2019;
Nicoli et al., 2020; Hackett et al., 2021). However, a typical
problem of such methods is that increasing the problem
dimension causes standard likelihood-based models, such
as normalizing flows, to model the target distribution, and
especially its tails, with decreasing accuracy (Del Debbio
et al., 2021; Grenioux et al., 2023). Some papers (Pompe
et al., 2020; Gabrié et al., 2022; Samsonov et al., 2022)
suggested mitigating the problem of inaccurate tail behavior
by combining local and global proposals. However, the
idea of using inexact proposals is not well studied in the
modern literature on adaptive MCMC methods. At the same
time, there are theoretical works focused on the properties
of perturbations of ergodic Markov kernels, starting from
the seminal paper (Breyer et al., 2001). Other contributions
on the topic include papers (Bardenet et al., 2014; Korat-
tikara et al., 2014; Chen et al., 2022) studying subsampling
methods in the context of Bayesian problems. We refer the
reader to an excellent recent paper (Rudolf et al., 2024),
which contains a much more detailed review of this topic.
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Algorithm 1 Approximate Metropolis-Hastings
Input: target density π(x), proposal samples
X1, . . . , Xn

Train a generative modelM on X;
p̂M ← unbiased estimator of marginal likelihood ofM
Y0← X0

for i=1 to n do
Draw sample Xi fromM
Compute acceptance rate

α(Yi−1, Xi) =
π(Xi)p̂M(Yi−1)
π(Yi−1)p̂M(Xi)

∧ 1

Get next sample

Yi ←

{
Xi with probability α(Yi−1, Xi) ,

Yi−1 with probability 1− α(Yi−1, Xi)

end for

3. Proposed Algorithm
We consider the setting of a target distribution π on a mea-
surable space (X,X ) with X ⊆ Rd and π known only up to
a normalizing constant. Without loss of generality we use
π to denote both the target distribution and its density w.r.t.
the Lebesgue measure on Rd. We propose to draw samples
approximately from π using the Approximate Metropolis
Hastings algorithm, a modification of the standard global
proposal Metropolis-Hastings algorithm. The algorithm
works by first training a generative modelM on the exist-
ing sample from π, then generating a Markov chain using
M to generate candidates and accepting or rejecting each
candidate based on the likelihood ratio π(x)/p̂M(x), where
p̂M is an estimator of the model’s likelihood. We summarize
the procedure in Algorithm 1.

A significant limitation of our approach is that it is only
applicable in the case when we both know the unnormalized
target density and have a sample from the target distribution
to trainM on. However, this setting can arise in practice, for
example in the scenario of energy-based models (Nijkamp
et al., 2020). A training sample for M can be obtained
by running gradient-based MCMC methods, such as the
Unadjusted Langevin algorithm (ULA) (Roberts & Tweedie,
1996). Running large chains of ULA in order to obtain a
large amount of samples from the energy-based model can
be prohibitively expensive, however obtaining a small high
quality training sample may be possible.

4. Theoretical justification
The approach suggested in Algorithm 1 can be justified
using existing results on perturbed Markov kernels. In the

exposition below we closely follow (Rudolf et al., 2024).
For two probability measures ξ and ξ′ on (X,X ), we say
that a probability measure ν on (X2,X⊗2) is a coupling
of ξ and ξ′ if for each A ∈ X , ν(A × X) = ξ(A) and
ν(X× A) = ξ′(A). Denote by Π(ξ, ξ′) the set of couplings
of ξ and ξ′ on (X,X ). Then the Kantorovich-Wasserstein
semimetric Wd (ξ, ξ

′), associated with the metric d(x, x′),
is defined as

Wd (ξ, ξ
′) = inf

ν∈Π(ξ,ξ′)

∫
X×X

d(x, x′)ν(dxdx′) . (1)

For example, we can choose d(x, x′) = 1x ̸=x′ and obtain
the total variation distance between ξ and ξ′. In order to
justify Algorithm 1 we state the result on closeness of invari-
ant distributions of Markov kernels P and P̂, provided that
P(x, ·) and P̂(x, ·) are close for any x ∈ X. More precisely,
we use the following assumptions:
A 1. Markov kernel P̂ admits a unique invariant dis-
tribution π̂, moreover, there exists ε > 0, such that
supx∈X Wd

(
P(x, ·), P̂(x, ·)

)
≤ ε.

We will show that A1 is satisfied for the Markov kernel of
Metropolis-Hastings algorithm, if the density estimate p̂M
is close enough to π. The second assumption is related to
the kernel P itself:
A 2. Markov kernel P admits π as invariant distribution
and is Wd (·, ·)-geometrically ergodic, that is, there exists
0 < ∆ < 1, such that for any x, x′ ∈ X it holds that

Wd (ξ, ξ
′) ≤ ∆d(x, x′) .

Under the above assumption we can state the following
result from (Rudolf et al., 2024):

Theorem 4.1. Assume A 1 and A 2. Then for invariant
distributions π and π̂ it holds that

Wd (π, π̂) ≤ ε/(1−∆) (2)

Proof of Theorem 4.1 can be found in Theorem 19.2.1 in
(Rudolf et al., 2024). This results formalizes an expected
fact that the closeness in Markov kernels implies, under
appropriate assumptions, closeness of their invariant dis-
tributions. Now we provide the following counterpart for
Theorem 4.1 under additional assumptions on π and p̂M.
A 3. Suppose that X ⊆ [0, 1]d, and both π and pM are
bounded away from 0 on [0, 1]d and bounded, that is, there
exist β > 0, such that β ≤ π(x) ≤ 1/β, and β ≤ pM(x) ≤
1/β. Moreover, ∥p̂M − pM∥∞ ≤ ϵ for some ϵ > 0.

Let us denote as Q the Markov kernel of the Metropolis-
Hastings algorithm with exactly calculated proposal pM
and by Q̂ its counterpart, corresponding to Algorithm 1.

Theorem 4.2. Assume A3. Then assumptions A1 and A2
are satisfied, hence, the bound (2) holds.
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Figure 1. Performance of different sampling algorithms on 2D synthetic targets, 4000 samples

Figure 2. Behavior of VAE and RNVP on a 2d mixture of Gaussians. Mode dropping can be observed for the RNVP proposal.

Proof of Theorem 4.2 is given in Appendix A. Uniform
geometric ergodicity of the Metropolis-Hastings sampler
under assumption A3 follows from classical results in the
literature, see e.g. (Johnson et al., 2013). Assumptions of
Theorem 4.2 are of course restrictive and can be further re-
laxed. Obtaining variants of Theorem 4.2 under assumption
more realistic than A3 is an interesting research direction
for future work.

5. Particular Instance: VAE
Variational Autoencoders (VAE) (Kingma & Welling, 2013)
are a natural choice of proposal model since they tend to
generate out-of-distribution samples and are relatively re-
sistant to mode collapse (Xiao et al., 2021). VAEs are
latent-variable models that are parameterized by two neural
networks. The prior p(z) is non-parametric, one network
(the encoder) defines the conditional distribution pθ(x|z),
another (the decoder) defines the posterior approximation
qϕ(z|x) which tries to match the real posterior pθ(z|x).
Here, x and z denote the observed and latent variables re-
spectively. The approximate posterior can be leveraged to
derive effective marginal likelihood (ML) estimators. This
is due to the fact that knowing the posterior pθ(z|x) means

knowing the ML, as pθ(x) = pθ(x, z)/pθ(z|x). Develop-
ment of unbiased ML estimates, including MCMC-based
ones (Salimans et al., 2015), has been motivated by the fact
that they can be used to construct ELBOs using Jensen’s in-
equality(Mnih & Rezende, 2016) — optimization objectives
of VAEs. In this work we focus on the L-sample importance
weighted estimate

p̂L(x) =
1
L

∑L
i=1

pθ(x,Zi)
qϕ(Zi|x) , (3)

where Z1, . . . , ZL ∼ qϕ(·|x) are sampled independently
from the decoder.

6. Experiments
2D Multimodal Distributions. We visualize our algorithm
for a 2D mixture-of-Gaussians target (see Figure 1). The
samples generated by the VAE (second from the left) cover
all the high-density regions of the target (leftmost). How-
ever, the proposal is blurry (the model produces a lot of arti-
facts). Approximate Metropolis-Hastings samples (second
from the right) are less blurry and visibly more similar to
the target. This example shows that applying our algorithm
to VAEs is a reasonable idea, because they can produce
artifacts even for relatively simple low-dimensional targets.
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Figure 3. Approximate Metropolis-Hastings improves feature distributions for a 128-dimensional Funnel

Figure 4. Comparison of Approximate Metropolis-Hastings and
Exact Metropolis-Hastings on a 128-dimensional Funnel for dif-
ferent values of a

The performance of non-adaptive Metropolis-Hastings with
a uniform proposal (rightmost) is worse, but not that bad,
because this is a 2D example. However, it does not scale to
higher dimensions.

We explored the possible advantages of using a VAE pro-
posal instead of a RealNVP (Dinh et al., 2016) proposal.
RealNVP is a type of normalizing flow. They allow straight-
forward marginal likelihood calculation but, as we show,
are not as flexible as VAEs. In Figure 2 Approximate
Metropolis-Hastings with a VAE proposal and Metropolis-
Hastings with a RNVP proposal are compared. Both pro-
posals have approximately the same complexity and were
trained for the same number of epochs. The RNVP proposal
is uniform in most areas and this leads to mode loss. The
quality of VAE proposal is more consistent across modes.
This highlights the need for using more expressive models
for proposals, since mode loss cannot be corrected by MH.

Distributions with complex geometry. We tested our al-
gorithm on a 128-dimensional Neal’s Funnel (see Figure
3). The funnel is a multidimensional distribution with the
first coordinate x1 distributed as N (0, a2), and the rest i.i.d.
as N (0, ex1), where a is a parameter. We found that the
trained VAE’s support mostly covers the target support, but
the VAE cannot fully learn the target’s shape. The Approxi-
mate Metropolis-Hastings brings the proposal distribution
closer to the target, which can be seen by plotting the dis-

Figure 5. Scaling of the Approximate Metropolis-Hastings algo-
rithm

tributions of different sample features, such as target log-
likelihood (middle) or distance from the main axis (right).
This once again shows the usefulness of Approximate MH.
We also compared our algorithm with RNVP-proposal clas-
sic MH on funnels with different values of a. As can be
seen Figure 4, the VAE is better at modeling the tails of
the target than RNVP, and Approximate MH samples are a
better representation of the target than MH samples.

Scaling with dimensionality. We looked at how our al-
gorithm scales with the number of dimensions in the case
of a mixture-of-gaussians target (Figure 5). We measure
sample quality using the sliced Wasserstein Metric between
samples and the target. We see that applying Approximate
Metropolis-Hastings reliably improves sample quality even
as the problem dimension increases. Further experiment
details can be found in Appendix C.

7. Further Work and Conclusion
In this work we have shown that Approximate Metropolis-
Hastings can outperform adaptive Metropolis-Hastings algo-
rithms based on normalizing flows, and also improve sample
quality of vanilla Variational Autoencoders. One direction
for further research is using different VAE architectures
with more expressive posterior estimates, such as inverse
autoregressive flows(Kingma et al., 2016). Better posterior
estimates could improve the quality of generated samples,
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since it would make ML estimates more reliable. It would be
natural to try using ML estimates other than the importance
weighted estimate for the VAE. On the other hand, Approxi-
mate Metropolis-Hastings could also be applied to models
other than VAE. Another possible extension of this work is a
fully adaptive version of Approximate Metropolis-Hastings,
where the proposal model is fine-tuned on generated sam-
ples while the algorithm is running.
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A. Proof of Theorem 4.2
Note that for any A ∈ B(Rd) the Markov kernels Q of MH algorithm and Q̂ of its perturbed version are defined, respectively,
as

Q(x,A) =

∫
y∈A

(
π(y)pM(x)

π(x)pM(y)
∧ 1

)
pM(y)dy + 1x∈A

∫
y∈X

(
1−

(
π(y)pM(x)

π(x)pM(y)
∧ 1

))
pM(y)dy

Q̂(x,A) =

∫
y∈A

(
π(y)p̂M(x)

π(x)p̂M(y)
∧ 1

)
pM(y)dy + 1x∈A

∫
y∈X

(
1−

(
π(y)p̂M(x)

π(x)p̂M(y)
∧ 1

))
pM(y)dy .

(4)

Since the function x ∧ 1 is 1-Lipschitz, we get from the previous formula with the simple algebra that∣∣∣Q(x,A)− Q̂(x,A)
∣∣∣ ≤ 2ϵ/β5 .

Moreover, we have
Q(x,A) ≥ (1/β4)ν(A) ,

where we have defined ν(A) =
∫
y∈A

pM(y)dy. Hence, the whole space X is (1, 1/β4)-small (see (Douc et al., 2018),

Chapter 9) in case of Q and (1, 1/(3β4))-small in case of Q̂. This means that both kernels are uniformly geometrically
ergodic, that is, they satisfy (2) with d(x, x′) = 1x ̸=x′ and ∆ = 1− 1/β4. Hence, both Q and Q̂ admit unique invariant
distributions. Thus, A1 and A2 hold.

B. Metrics
The Wasserstein metric between two samples x and y is defined as

Wp (x,y) = min
γ∈Rm×n

+

∑
i,j

γij ||xi − yj ||p

 1
p

with the minimum being taken over positive-valued matrices γ whose rows and columns all sum to 1. In this paper we report
W2 (·, ·). A sliced metric between 2 samples is calculated as the mean value of a 1D metric between random projections of
those samples. To compute the Wasserstein metric in 1D we use Python Optimal Transport (Flamary et al., 2021).

C. Experiment Details
For all experiments with Approximate Metropolis-Hastings we use a Variational Autoencoders as the proposal and a
512-sample Importance weighted marginal likelihood estimate. The encoder and decoder are symmetric and both consist of
fully-connected layers with batch normalization layers in-between. All proposals are trained on 214 samples from the target
distribution.

C.1. 2D Multimodal Distributions

Figure 1. Reported confidence intervals are for the MoG target in the second row of Figure 1. The intervals boundaries are
the 25th and 75th quantiles of the sliced Wasserstein metric over 10 runs of 5000 samples each.

C.2. Distributions with Complex Geometry

The density of Neal’s funnel with parameter a is

pfunnel(x) = Z−1 exp

(
− x2

1

2a2
− 1

2
e−x1

d∑
i=2

[
x2
i + x1

])
, d ≥ 2,

where Z is the normalizing constant.

The VAE used in Figure 3 and has 3 hidden layers of 128 neurons in both the encoder and decoder. The density plots are
based on 5000 samples each.
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Adaptive Metropolis-Hastings with Inexact Proposal Density Evaluation

In Figure 4 the VAE used is the same as in Figure 3. The flow proposal is 7 RealNVP layers. The flow proposal has
approximately twice as many parameters as the VAE proposal, yet still performs worse. Modifying the training time and
amount of layers did not significantly help RNVP. In general we found that training RNVPs is less reliable than training
VAEs, as they are prone to exploding gradients and mode collapse.
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