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1 Description of the problem setting for the

course work

1.1 Terminology

1.1.1 Focal Length

Focal length is a distance between "nodal point"(that is where light
converges in a lens) and a camera sensor[2]. Cameras have a base focal length
(max), but some cameras provide with a possibility to vary focal length by
increasing/decreasing length of a camera lens. Thus a range of focal length
(𝐹 = (𝐹𝑚𝑖𝑛,𝐹𝑚𝑎𝑥)) is of interest, as applications imply usages with long focus
lenses.

1.1.2 Image sensor

An image sensor refers to the electronic component in a digital camera
that captures and converts light into digital signals, ultimately creating a
digital image. The image sensor plays a crucial role in digital photography
by replacing the traditional film used in film cameras. 𝑈 = (𝑢1,𝑢2) - sensor
size of a camera in pixels represents number of pixels along 𝑥 and 𝑦 axes
respectively, total image might have upmost 𝑢1 * 𝑢2 pixels, given that photo
is RGB, it can be calculated, that on an 3-dimensional tensor with shape
(𝑢1, 𝑢2, 3) the whole image can be stored, and on 4-dimensional tensor with
shape (𝑢1, 𝑢2, 3, frames) a whole video may be stored frome such camera
without audio-stream, where frames - is the amount of frames taken from
that camera consequently.

1.1.3 Angular Velocity

An angular velocity is the speed of rotation for an object that can be

stated as 𝜔 =
𝑑𝜙

𝑑𝑡
.
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1.1.4 Elevation

Vertical angle of an observed object over true horizon. Elevation
combined with azimuth are used for obtaining the direction to an object.
Elevation

1.1.5 Azimuth

Horizontal angle evaluated from predefined direction (for example
north) and direction of an observed object.

1.1.6 PTZ Camera

is also known as pan-tilt-zoom camera is a type of cameras that is
able to rotate across all 3 axis of rotation.

1.2 Work Plan

1) Familiarize oneself with the literature.
2) Formulate the goal and objectives of the work.
3) Transition from a camera view to a top view (Projective Geometry).
4) Solve the TSP problem for navigating players statically positioned on

the field.
5) Develop a simulation for debugging and testing the long-focus camera

control algorithm.
а) Develop simulations of camera projection onto the field (3D).
б) Develop an API to control the camera in the simulation.
в) Integrate object behavior simulation with camera simulation.

6) Develop a metric that fairly evaluates the algorithm’s performance.
7) Develop a camera control algorithm with the best metrics.

а) Implement field traversal through points most visited by each
player without predicting player movement (find the most frequent
point for each player).
б) Implement player traversal considering predictions of player
movement.
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8) Implement a PTZ camera model considering speed and acceleration
constraints imposed on it. In the simplest case, neglect oscillations.

9) Summarize the results.

1.3 Assumptions

1. The input data is well-labeled and accurately reflects the true
locations of objects, with IDs not getting mixed up.

2. One camera has a view of the entire field, while the other is a
telephoto camera.

3. If a face is turned within ±45 degrees towards the camera, it is
considered possible to photograph (so positions of players are known at a
given moment).

4. The height of the players is 170 cm, with the possibility of setting
individual values.

5. If the face is captured within 150 pixels under the condition of point
3 and is not obstructed by other players, the player is photographed.

1.4 Problem Statement

Develop a mechanism for controlling a long-focus camera for efficient
player detection and tracking within the field of view. A cyclic process is
proposed, within which the camera automatically switches between players,
adjusting the viewing angle and shooting distance. At the beginning of each
iteration, the camera is focused on a new player, and the distance between
them and the camera is optimized until the player’s silhouette or face occupies
a specified percentage of screen space - n% (with a tolerance). After that, the
camera remains fixed on the player for a certain number of frames k before
moving to the next player for the next iteration of the process.

When using the term ’efficiently’ in this context, it implies that
the algorithm should perform optimally on various datasets, such as video
recordings of football matches with player labels and their positions in each
frame. An algorithm tested on a subset taken from the population of football
matches should perform traversal with shooting in the shortest time possible.
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1.4.1 Coordinate Transformation

A projectivity from one projective plane to another is called a plane-to­
plane projectivity, though it is often simply referred to as a projectivity. It
operates on and produces a homogeneous 3-vector, thus represented as a
3-by-3 matrix.

To understand how such a projectivity occurs, consider two images
taken from different viewpoints of a plane within a scene, as illustrated
in Figure 1. The mapping of points to their corresponding points in
image 1 is defined by a projectivity. Similarly, the mapping of points to
their corresponding points in image 2 is defined by another projectivity.
An essential characteristic of projectivities is that they form a group.
Consequently, there exists a projectivity that describes the mapping from
the image of the plane in image 1 to the image of the plane in image 2 where.

𝑅 = 𝑆𝑇−1

Given particular coordinates 𝑋, 𝑌 a plane-to-plane projective
transformation can be done as following:⎡⎢⎢⎣

𝜏𝑖𝑋
′

𝜏𝑖𝑌
′

𝜏𝑖

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑎1 𝑎2 𝑏1

𝑎3 𝑎4 𝑏2

𝑐1 𝑐2 1

⎤⎥⎥⎦
⏟  ⏞  

𝑀

⎡⎢⎢⎣
𝑋

𝑌

1

⎤⎥⎥⎦

Where 𝑎𝑖 are elements of a scaling/rotation matrix,
[︁
𝑏2 𝑏1

]︁𝑇
is a

translation vector and
[︁
𝑐1 𝑐2

]︁
is a projection vector.

To find true new coordinates 𝑋 ′, 𝑌 ′ resulting vector has to be divided
by 𝜏𝑖 that is the scaling factor.

1.4.1.1 Code implementation

Given source image field corner coordinates in a list
corner_src_points, a projective transformation matrix can be calculated.
Function cv2.getPerspectiveTransform takes 2 arguments: source (4
coordinates (x,y), resembling corners of the input quadrilateral) and
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destination (4 coordinates (x,y), resembling corners of the output
quadrilateral). On output the projective transformation matrix 𝑀 ∈ R3×3

described above is obtained.
1 Algorithm : GetProject iveTransformMatrix
2 Input : base_s ize ( i n t e g e r ) , corner_src_points ( l i s t o f tup l e s o f i n t e g e r s )
3 Output : M (2D array )
4
5 1 : I n i t i a l i z e base_size to 700 # ar b i t r a r y s i z e o f sma l l e s t s i d e o f new

plane in p i x e l s
6 2 : I n i t i a l i z e whole_stadion_length to 105 # s i z e o f a c t ua l f o o t b a l l

stadium in meters
7 3 : I n i t i a l i z e whole_stadion_width to 68
8 4 : Ca l cu la t e s tad ion_rat io as ( whole_stadion_length / 2) /

whole_stadion_width # leng t h to width r a t i o
9

10 Function GetProject iveTransformMatr ix ( base_size : i n t ege r ,
corner_src_points : l i s t o f tup l e s o f i n t e g e r s ) −> 2D array :

11 5 : Set d1 to (0 , 0)
12 6 : Set d2 to (0 , base_s ize )
13 7 : Set d3 to ( base_size ∗ stad ion_rat io , 0)
14 8 : Set d4 to ( base_size ∗ stad ion_rat io , base_s ize )
15
16 9 : Set corner_dest_points to [ d1 , d2 , d3 , d4 ]
17
18 10 : Convert corner_src_points to a f l o a t 3 2 2D array named source
19 11 : Convert corner_dest_points to a f l o a t 3 2 2D array named dest
20 12 : Ca l cu la t e the p r o j e c t i v e t rans fo rmat ion matrix M us ing

cv2 . getPerspect iveTrans form ( source , des t )
21 13 : Return M
22 End Function
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1 Algorithm : TransformCoordinates
2 Input : f i le_name ( s t r i ng , op t i ona l ) , p layer_labels_dataset_path ( s t r i ng ,

op t i ona l )
3 Output : new_coords ( dataframe )
4
5 1 : Def ine d e f au l t va lue s for f i le_name as ’ track_df_new_coords . csv ’ and

player_labels_dataset_path as ’ yantar −230722−02_track . csv ’
6
7 2 : Function DownscaleDataFrame ( df ) :
8 # Implementation omit ted f o r downsca l ing dataframe
9

10 3 : Function ApplyProject iveTransform (M, XY) :
11 # XY i s an array o f shape (3 , ) , XY = [ x , y , 1 ]
12 # M i s a matrix o f shape (3 , 3)
13 3 . 1 : XY_transformed <− M @ XY
14 3 . 2 : s c a l i n g_ fa c t o r <− XY_transformed [ 2 ]
15 3 . 3 : unscaled_XY_transformed <− XY_transformed / s c a l i n g_ fa c t o r
16 3 . 4 : Return unscaled_XY_transformed
17
18 4 : Function GetPosit ionTransformed ( frame ) :
19 4 . 1 : I n i t i a l i z e XY_init , id_count , and ones
20 4 . 2 : Concatenate XY_init with ones
21 4 . 3 : I n i t i a l i z e XY_transformed_frame as an empty l i s t
22 4 . 4 : For i from 0 to l ength o f id_count − 1 :
23 4 . 4 . 1 : XY_trans <− ApplyProject iveTransform (M, XY_init [ i ] )
24 4 . 4 . 2 : Append XY_trans to XY_transformed_frame
25 4 . 5 : Return XY_transformed_frame
26
27 5 : Load track_df from player_labels_dataset_path us ing CSV read func t i on
28 6 : I n i t i a l i z e track_df_transformed as an empty l i s t
29 7 : Compute s h i f t as M @ [0 , 0 , 1 ]
30 8 : Downscale track_df us ing DownscaleDataFrame func t i on
31 9 : F i l t e r track_df to obta in rows where " frame" equa l s 1
32 10 : Apply GetPosit ionTransformed to the f i l t e r e d dataframe to get

track_df_transformed
33
34 11 : Modify new_coords :
35 1 1 . 1 : Subtract s h i f t [ 0 ] from new_coords [ ’ x ’ ]
36 1 1 . 2 : Subtract s h i f t [ 1 ] from new_coords [ ’ y ’ ]
37
38 12 : Save new_coords to a CSV f i l e with the g iven fi le_name
39 13 : Return new_coords
40
41 End Algorithm
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Now by using this function and warpPerspective function from opencv library,
transformation can be done:

1 corrected_image = cv2 . warpPerspect ive ( image , M, ( width , he ight ) ,
borderValue =(255 ,255 ,255) )

2 trans form_coord inates ( f i le_name="unscaled_track_df_new_coords . csv ")

1.5 Structure of the data

Given a football field on which there are players and a ball, specified
by coordinates 𝑋⃗, as functions of time 𝑡, in the reference system associated
with the field. So we have an input array 𝑋𝑛𝑚

𝑖 , where
𝑛 - player number;
𝑚 - describes one of the coordinates of the player’s position;
𝑖 - describes a moment in time.
It is necessary to build a high-resolution camera axis control function

(reserve 𝑘 for the camera number) with the given characteristics:
𝐹 = (𝐹𝑚𝑖𝑛,𝐹𝑚𝑎𝑥) - focal length range;
𝑈 = (𝑢1,𝑢2) - camera matrix size in pixels;
𝑝 - matrix pixel size in meters (real world size of an image sensor’s

pixel);
Ω = (𝜔1, 𝜔2) - maximum angular velocity in elevation and azimuth;
𝑑𝐹
𝑑𝑡 𝑚𝑎𝑥

- maximum rate of change of focal length over time.
Camera coordinates in the reference system associated with the far

left corner of the field

𝑊 = {𝑤1,𝑤2,𝑤3}

1.6 The simplest task of controlling a high-resolution
camera

It is necessary to propose an algorithm for bypassing all players on
the field, starting from the center of the field.

As a result we should get:
𝜓⃗(𝑡) is a vector describing the elevation angle and azimuth of the

camera sighting as a function of time.
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At the same time, we must ensure that the player’s image is obtained
in the camera’s field of view during the time ∆𝑇 corresponding to 𝑅 frames.

We consider the movement of the players to be a prior unknown.
1) The first step is to bypass stationary players
2) Second step - bypassing moving players

1.7 Approximations and limitations

Moving the camera angle up/down left/right and focusing are
independent of each other and can be done in parallel. (The metric being
optimized depends on this). We plan to have a different number of facilities
and much greater than the number of football players. (The choice of
algorithm depends on this - since the problem is NP hard, for a small amount
it can be solved head-on - the 22 hypothesis is more optimal). The camera
should return to the starting point (center by default).
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2 Formal problem statement

2.1 The problem of traversing a set of moving points on a
surface

The problem of fast traversal of dynamic systems is a critical problem
in the context of surveillance, safety, logistics and other fields. In our concrete
case, we aim to develop an algorithm, able to traverse with long-focus
camera those dynamic agents in the shortest time possible (or close to it).
Advancements in this research could help across different fields, such as
human surveillance, sport stadiums, city safety and etc. Thus provided with
the purpose let us dive into the formal statement of a problem.

Let R3 be the vector space, and 𝑃𝑡 = {(𝑥(𝑡)1 ,𝑦
(𝑡)
1 ), . . . , (𝑥

(𝑡)
𝑛 ,𝑦

(𝑡)
𝑛 )} would

be a set of observed objects existing in this vector space, that lie on a plane
𝑧 = 0 in moment of time 𝑡 ∈ N (𝑥,𝑦 ∈ R). Let 𝒫

𝒫𝑡(𝑥̂, 𝑦, 𝑧, 𝜑𝑡, 𝜓𝑡, 𝜃𝑡,) → 𝒱

be the projection function that calculates corner points of FOV projection
𝒱𝑡 ∈ R3×4 on 𝑧 = 0 in the moment 𝑡. Here 𝑥̂, 𝑦, 𝑧 - coordinates of a camera,
𝜑𝑡, 𝜓𝑡, 𝜃𝑡 - yaw (azimuth), pitch (elevation) and roll in the time moment 𝑡
(rotation coordinates).

Let 𝒞
𝒞(𝑃𝑡,𝒱𝑡) →

[︁
∆𝜑𝑡 ∆𝜓𝑡 ∆𝜃𝑡

]︁𝑇
be the controller function, that makes a decision on the controlling of camera
direction and zoom for the time-step 𝑡+1. Camera rotations then are updated
as following: ⎡⎢⎢⎣

𝜑𝑡+1

𝜓𝑡+1

𝜃𝑡+1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝜑𝑡

𝜓𝑡

𝜃𝑡

⎤⎥⎥⎦+

⎡⎢⎢⎣
∆𝜑𝑡

∆𝜓𝑡

∆𝜃𝑡

⎤⎥⎥⎦
Let ℐ

ℐ𝑡(𝒫⊔,𝒱𝑡, 𝑝1, 𝑝2) → 𝑎 ∈ {0,1}

Be the indicator function, concluding if an observed object is taking up from
𝑝1 to 𝑝2 portion of space on a viewfinder AND never was observed in proper
ratio before (𝑝1 ⩽ 𝑝 ⩽ 𝑝2). 𝑎 in this case is an indicator (True or False).
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Then the constrained optimization problem looks as following:⎧⎪⎨⎪⎩
𝑇∑︀
𝑡=1

ℐ𝑡(𝒫⊔,𝒱𝑡, 𝑝1, 𝑝2) ⩾ 𝑛

𝑇 → min
𝒞

2.2 An alternative formulation of DTSP in the general case

DTSP is defined on a complete bidirectional graph 𝐺 = (𝑉,𝐸), where
𝑉 is the set of vertices of size 𝑛 and 𝐸 is the set of edges. 𝑉 consists of a
depot 0 and a set of potential agents. We consider an asymmetric distance in
DTSP. Thus, 𝐸 includes edges in both directions. The agents to be visited
are placed in a pool of agents 𝐶 of size 𝑐, where 𝐶 is a subset of 𝑉 .

The salesman starts his journey from depot 0 at the beginning of
time (t = 0). He must service each agent in the pool 𝐶 exactly once and
then return to the depot. The travel time from vertex 𝑖 to vertex 𝑗 depends
on a time-dependent function 𝑔𝑖𝑗(𝑡), where 𝑡 is the time to visit vertex 𝑖.
We assume that the seller does not wait at a vertex. This is true when the
FIFO (First-In-First-Out) constraint is satisfied, i.e., it is guaranteed that if
a vehicle leaves vertex 𝑖 for vertex 𝑗 at a certain time, any identical vehicle
leaving vertex 𝑖 for vertex 𝑗 at a later time will arrive later at vertex 𝑗.

Let 𝑥𝑖𝑗 be a binary decision variable that equals 1 if the seller travels
from vertex 𝑖 to vertex 𝑗, and 0 otherwise.

Let 𝑠𝑖 be the time when the seller visits vertex 𝑖. The objective is to
minimise the total travel time to visit all agents, i.e.

min
∑︁

𝑖∈{0}∪𝐶

∑︁
𝑗 ∈{0}∪𝐶

𝑔𝑖𝑗(𝑠𝑖)𝑥𝑖𝑗

Set of constraints:

13



∑︁
𝑗 ∈{0}∪𝐶

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐶 (2.1)

∑︁
𝑖∈{0}∪𝐶

𝑥𝑗𝑖 = 1 ∀𝑖 ∈ 𝐶 (2.2)

𝑠0 = 0 (2.3)

𝑠𝑖 + 𝑔𝑖𝑗(𝑠𝑖)𝑥𝑖𝑗 = 𝑠𝑖 + (𝑠𝑗 − 𝑠𝑖)𝑥𝑖𝑗 (2.4)

∀𝑖 ∈ {0} ∪ 𝐶, 𝑗 ∈ 𝐶 (2.5)

𝑥𝑖𝑗 ∈ {0,1} (2.6)

Constraints (2) and (3) ensure that there is only one incoming and
outgoing vertex for agent 𝑖. Constraint (4) is the initial time of the commit­
merchant in the depot. Constraints (5) specify that the visit time of agent
𝑗 depends on the visit time of its predecessor 𝑖. This set of constraints
also guarantees that the visit time at each vertex increases along the path
(provided that 𝑔𝑖𝑗(𝑡) > 0). Hence, there is no sub-cycle in the solution.

The model expressed by formulas (1)-(6) is essentially a formulation
of TDTSP. It is nonlinear because of the time-dependent function 𝑔𝑖𝑗(𝑡).
Some researchers try to linear-ize the formulation by imposing additional
assumptions. In contrast, this formulation describes the most generalized
version. Note that the domain 𝑔𝑖𝑗(𝑡) is continuous. For ease of data collection,
the time space can be discretised into a set 𝑇 of time steps. Thus, we have
the traveling time from vertex 𝑖 to vertex 𝑗 around a time step 𝑡 ∈ 𝑇 as
input values denoted as 𝑑𝑖𝑗(𝑡). Here we call [𝑑𝑖𝑗(𝑡)] the traffic pattern of the
graph 𝐺. We can then approximate 𝑑𝑖𝑗(𝑡) by working with 𝑑𝑖𝑗𝑡.

TDTSP assumes that all conditions of the graph dynamics are known
in advance. In practice, to cope with the dynamic environment, we introduce
a stochastic variable 𝜑𝑖𝑗(𝑡) in addition to 𝑔𝑖𝑗(𝑡) to deal with the uncertainty
of the actual traveling time. Then the actual traveling time from vertex 𝑖 to
vertex 𝑗 at time 𝑡, denoted as 𝑓𝑖𝑗(𝑡), is 𝑓𝑖𝑗(𝑡) = 𝑔𝑖𝑗(𝑡) + 𝜑𝑖𝑗(𝑡).

To address the other uncertainty problem, i.e., changing agent queries
in a dynamic environment, we introduce a random operation Ω𝑘 after the
camera finishes inspecting the 𝑘-th agent, denoted as

14



Ω𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, insert unvisited agent 𝑖 into set 𝐶

0, do nothing

−1, remove agent 𝑖 from set 𝐶

DTSP is an online optimisation task. Solving it efficiently is very
difficult. Considering the scaling problem 𝑛 = 40 of a graph G with invariant
location. If 𝑐 = 20, the number of possible instances is also huge. When the
two dynamic aspects mentioned above are taken into account, the problem
becomes even more difficult.
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3 Literature Review

3.1 Description of Relevant Literature

3.1.1 Temporal Graphs

∙ [3] Each edge 𝑒 = (𝑢, 𝑣, 𝑡) ∈ 𝐸 is a temporal edge from a vertex 𝑢
to another vertex 𝑣 at time 𝑡. For any two temporal ages (𝑢,𝑣,𝑡1) and (𝑢,𝑣,𝑡2)

𝑡1 ̸= 𝑡2.
∙ Each vertex 𝑣 ∈ 𝑉 is active when there is a temporal edge that

starts or ends at 𝑣.
∙ 𝑑(𝑢, 𝑣): the number of temporal edges from 𝑢 to 𝑣 in 𝐺.
∙ 𝐸(𝑢, 𝑣): the set of temporal edges from 𝑢 to 𝑣 in 𝐺, i.e., 𝐸(𝑢,𝑣) =

{(𝑢,𝑣,𝑡1),(𝑢,𝑣,𝑡2), ..., (𝑢,𝑣,𝑡𝑑(𝑢,𝑣))}.
∙ 𝑁𝑜𝑢𝑡(𝑣) or 𝑁𝑖𝑛(𝑣): the set of out-neighbors or in-neighbors of 𝑣 in

𝐺, i.e., 𝑁𝑜𝑢𝑡(𝑣) = {𝑢 : (𝑣, 𝑢, 𝑡) ∈ 𝐸} and 𝑁𝑖𝑛(𝑣) = {𝑢 : (𝑢, 𝑣, 𝑡) ∈ 𝐸}.
∙ 𝑑𝑜𝑢𝑡(𝑣) or 𝑑𝑖𝑛(𝑣): the temporal out-degree or in-degree of 𝑣 in 𝐺,

defined as 𝑑𝑜𝑢𝑡(𝑣) =
∑︀

𝑢∈𝑁𝑜𝑢𝑡(𝑣
𝑑(𝑣,𝑢) and 𝑑𝑖𝑛(𝑣) =

∑︀
𝑢∈𝑁𝑖𝑛(𝑣

𝑑(𝑢,𝑣).

3.1.2 Sub-types of TSP

Based on the book "The Traveling Salesman Problem and Its
Variations,"[4] two variations of TSP stand out as most relevant to our
problem:

Moving Target TSP: We have a collection 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} of
𝑛 objects, each located at positions {𝑝1, 𝑝2, . . . , 𝑝𝑛}. Each object 𝑥𝑖 moves
from its position 𝑝𝑖 in R2 with velocity 𝑣𝑖. A pursuer starts at the origin and
moves at speed 𝑣 with the objective of intercepting all objects 𝑥1, 𝑥2, . . . , 𝑥𝑛
as quickly as possible. This problem relates to the time-dependent TSP.

Time-Dependent TSP: In this scenario, each arc (𝑖, 𝑗) in 𝐺 has 𝑛
different costs 𝑐𝑡𝑖𝑗 = 1, 2, . . . , 𝑛. The cost 𝑐𝑡𝑖𝑗 indicates the cost of traveling
from city 𝑖 to city 𝑗 during time period 𝑡. The aim is to determine a tour
(𝜏(1), 𝜏(2), . . . , 𝜏(𝑛), 𝜏(1)), where 𝜏(1) = 1 is the home location at time
period zero, in 𝐺 such that

∑︀𝑛
𝑖=1 𝑐

𝑡𝑖
𝜏(𝑖)𝜏(𝑖+1) is minimized. Here, 𝑛 + 1 is

equivalent to 1. If 𝑐𝑡𝑖𝑗 = 𝑐𝑡𝑗𝑖 = . . . = 𝑐𝑡
′

𝑖𝑗 for all (𝑖, 𝑗), the time-dependent
TSP reduces to the traditional traveling salesman problem.
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In our case, it seems that the problem encompasses both sub-types.
In the article [5], the dynamic TSP with variable weights is explored.

The impact of these changes on the problem’s fitness landscapes is examined.
The paper addresses key questions about the dynamic TSP, such as

"how many solutions are affected by a change?"and "how does the severity
of the problem influence the optimal solutions?"

The study includes simulations of the dynamic TSP with weight
changes, revealing that the new optimal solutions are usually close to the
previous ones.

In [6], a robust algorithm for solving DTSP is introduced.
Experimental results demonstrate that this algorithm is highly effective,
producing high-quality solutions in very short time steps.

3.1.3 Deep Reinforcement Learning

In 2023, an article [7] was published that formulates a problem
similar to the one considered in this work. It turned out that our
problem is more related to Time-Dependent TSP (TDTSP) rather than
Dynamic TSP (DTSP), as initially assumed. The authors used a Deep
Reinforcement Learning approach to solve this problem, introducing an
additional complication: new vertices can disappear and appear in the
process, which may also be relevant for a football field. Provided the data
issue (ensuring a sufficient volume of data for training an RL model with an
attention mechanism) is resolved, the authors’ methodology can be adapted
to our case.

3.1.4 Vehicle Routing Problem (VRP)

Problem Statement of VRP: The Vehicle Routing Problem (VRP) ([8]
[9]) is an optimization problem aimed at finding the optimal routes for a fleet
of vehicles, taking into account several factors such as time, cost, and load
capacity. Formally, in VRP, there is a given number of vehicles, each with
constraints on load capacity and working hours. There is also a set of client
points that need to be visited, and for each point, the load and service time
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requirements are known. The objective of VRP is to optimally allocate the
client points among the vehicles to minimize the total costs, considering all
constraints.

Difference from TSP: The main difference between TSP and VRP
is that in TSP, there is one salesman who must visit a set of cities and
return to the starting point, minimizing the total distance. In VRP, there are
multiple vehicles, each needing to service a set of client points with specific
constraints. Therefore, in VRP, it is necessary to optimize the allocation
of client points among the vehicles considering various factors such as load
capacity, service time, and throughput, making this problem more complex
compared to TSP. The VRP problem statement may be relevant in the case
of multiple observing cameras.

3.1.5 CGN (Convolutional Graph Networks) for TSP

The article [10] discusses the use of GNN for optimizing the route
when multiple cities need to be visited and returned to the starting point. The
basics of the problem, the application of GNN to it, and the implementation
details of the model using Graph Transformer and Residual Gated GCN
are discussed. It concludes that the model demonstrates the ability to find
optimal routes but requires labeled data, and a promising direction for
development could be a transition to reinforcement learning. Labeled data
are obtained using the Concorde TSP Solver, meaning that optimal paths
for graphs need to be calculated first, and then the neural network training
can begin.

3.1.6 Graph Neural Networks

Graphs are pervasive in our world, with many real-world entities
being defined by their connections to others. These collections of objects
and their interconnections can be naturally represented as graphs. For more
than a decade, researchers have been developing neural networks tailored to
graph data, known as graph neural networks (GNNs). Recent advancements
have significantly enhanced their capabilities and expressive potential. Today,

18



GNNs are finding practical applications in diverse fields such as antibacterial
discovery, physics simulations, fake news detection, traffic prediction, and
recommendation systems.

This article [11] delves into the intricacies of modern graph neural
networks. We structure our discussion into four sections. Initially, we examine
the types of data that are most appropriately represented as graphs, along
with some typical examples. Next, we discuss what sets graphs apart from
other data types and the unique considerations required when working with
them. In the third section, we construct a modern GNN, detailing each
component of the model and tracing the evolution of key innovations in
the field. We progress from a basic implementation to a cutting-edge GNN
model. Finally, we offer a GNN playground, allowing you to experiment with
a real-world task and dataset to better understand how each element of a
GNN model influences its predictions.

3.1.7 Linearization of TDTSP (integer programming) [1]

Papers [1] and [12] showed the possibility of formulating the time­
dependent traveling salesman problem, as an integer programming problem,
diving deeper on the first of those papers here. Given the Time-Dependent
Traveling Salesman Problem (TDTSP), the task is to find a Hamiltonian tour
with the shortest total duration, where traversal times between vertices vary
over time. This paper makes two main contributions. First, it introduces a
lower and upper bounding procedure that involves solving a simpler, though
still NP-hard, asymmetric traveling salesman problem (ATSP). Additionally,
it is demonstrated that this ATSP solution is optimal for the TDTSP when
all arcs exhibit a common congestion pattern. Second, the paper formulates
the TDTSP as an integer linear programming model and develops valid
inequalities for this model. These inequalities are incorporated into a branch­
and-cut algorithm capable of solving instances with up to 40 vertices.
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3.1.8 Genetic ant colony algorithms

The Dynamic Traveling Salesman Problem (DTSP) is a complex
optimization challenge that traditional methods struggle to solve. Numerous
approaches have been proposed in the literature, each with its own strengths
and weaknesses. Among these, Genetic Algorithms (GA) and Ant Colony
Optimization (ACO) have proven effective for tackling the DTSP. This paper
[13] introduces a novel hybrid algorithm that combines GA and ACO to
provide an improved solution for the DTSP. The hybrid algorithm focuses
on the suitability of the method and the travel distance for the DTSP. The
results indicate that the hybrid algorithm avoids easily settling into local
optima and demonstrates a good convergence speed towards an optimal
solution.
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4 Solution Description

4.1 Coordinate Systems Used

At this stage, two coordinate systems are used: the first is related to
the football field, where the top-left corner is considered the point (0, 0), and
the second is related to the camera coordinates, in a reference system linked
to the far left corner of the field. For given coordinates 𝑋, 𝑌 , the transition
from one plane to another is carried out according to the following law:⎡⎢⎢⎣

𝜏𝑖𝑋
′

𝜏𝑖𝑌
′

𝜏𝑖

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑎1 𝑎2 𝑏1

𝑎3 𝑎4 𝑏2

𝑐1 𝑐2 1

⎤⎥⎥⎦
⏟  ⏞  

𝑀

⎡⎢⎢⎣
𝑋

𝑌

1

⎤⎥⎥⎦ ,

where 𝑎𝑖 are scaling/rotation elements,
[︁
𝑏2 𝑏1

]︁𝑇
is the shift vector,

and
[︁
𝑐1 𝑐2

]︁
is the projection vector.

To find the true values of 𝑋 ′, 𝑌 ′, the resulting vector must be divided
by the coefficient 𝜏𝑖, which is the scaling factor.

As a result, an algorithm was developed using the cv2 library, which
takes two arguments as input: four initial coordinates (x, y), which indicate
the initial corners of the rectangle of the transition area, and the second
argument - four coordinates that indicate the desired corner coordinates for
the output image. The algorithm produces a transformation matrix 𝑀 ∈
R3×3, after which the algorithm is sequentially applied to each frame from
the initial dataset. As a result, a new dataset is obtained in which for each
id, i.e., the recognized object in the frame, new coordinates (𝑋 ′, 𝑌 ′) are
obtained. An example visualizing the algorithm’s work:

4.2 Camera Simulation

4.2.1 Line - Plane Intersection

Intersection of a plane with a line: Let 𝑝0 be the camera vector, and
𝑣0 be the direction vector of the light ray passing through the camera vector
(center of the focal lens).
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Рисунок 4.1 — Image before transformation of coordinates

Рисунок 4.2 — Image after transformation of coordinates

Then the parametric equation of the line can be defined as:

𝑃 (𝑡) = 𝑝0 + 𝑡 · 𝑣0 (𝑃 (𝑡) is a point on the line)
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We need to find such a 𝑡 that 𝑃 (𝑡) lies on a given plane. Substituting
this into the plane equation, we get:

𝑎(𝑃0𝑥 + 𝑡𝑉 0𝑥) + 𝑏(𝑃0𝑦 + 𝑡𝑉 0𝑦) + 𝑐(𝑃0𝑧 + 𝑡𝑉 0𝑧) = 𝑑

Solving for 𝑡 (𝑛 is the normal vector of the plane):

𝑡 =
𝐷 − 𝑛𝑃0

𝑛 · 𝑉 0

We are interested in 𝑡 < 0 since positive values correspond to the
wrong light direction.

4.2.2 Field of View and Angle of View

For truthful simulation of field of view and physics of long-focus
cameras, work of Matvey Gancev was used (Модель для панорамной ка­
меры высокого разрешения). As simulation of physics for camera is a
complicated and time-requiring task, with the admission of Matvey Gancev,
the simulation code was used. However modeling the camera movement and
traversal algorithm are completed without use of intellectual property from
other researchers. It is a complicated task to set the angle velocity, thus it
can be estimated with a velocity on a euclidean plane.

Field of View: The calculatePanoramicSystemFOV method calculates
the angle of view (FOV) for each camera in the panoramic system and returns
a list of camera angles of view for the panoramic system.

The method defines the plane vector and the coordinates and angles
of the panoramic system. Then for each camera in the panoramic system, the
following occurs:

1) The camera coordinates and its angles of view are calculated.
2) Vectors defining the camera’s angles of view are created.
3) Rotations are applied to the vectors of the camera and the panoramic

system.
4) The intersection point of the line (defined by the camera) with the

plane (panoramic system) is calculated.
5) The camera’s angle of view and the main axis of the camera’s view

are calculated.
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1. Calculation of vector a:

vector_a =

⎡⎢⎢⎣
1.0

tan
(︁

camera_width_angle_of_view
2

)︁
− tan

(︁
camera_height_angle_of_view

2

)︁
⎤⎥⎥⎦

2. Rotation of vector a:

a = (Rps ·Rc) · a

Here Rps and Rc are the rotation matrices for the panoramic system
and the camera, respectively.

3. Re-rotation of vectors b, c, d, p:

b = (Rps ·Rc) · b

c = (Rps ·Rc) · c

d = (Rps ·Rc) · d

p = (Rps ·Rc) · p

Here Rps and Rc are also the rotation matrices for the panoramic
system and the camera.

4. Calculation of point t0:

t0 = rps +Rps · rc

Here rps and rc are the coordinates of the panoramic system and the
camera, respectively.

5. Definition of parameters 𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑝0:

𝑎0 = −(vplane · vt0) +𝐷

(vplane · v𝑎)

𝑏0 = −(vplane · vt0) +𝐷

(vplane · v𝑏)

𝑐0 = −(vplane · vt0) +𝐷

(vplane · v𝑐)

𝑑0 = −(vplane · vt0) +𝐷

(vplane · v𝑑)

𝑝0 = −(vplane · vt0) +𝐷

(vplane · v𝑝)
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6. Calculation of the coordinates of the angles of view and the main
axis of the camera:

fov_a = 𝑎0 · v𝑎 + vt0

fov_b = 𝑏0 · v𝑏 + vt0

fov_c = 𝑐0 · v𝑐 + vt0

fov_d = 𝑑0 · v𝑑 + vt0

main_axis = 𝑝0 · v𝑝 + vt0

These transformations are necessary to calculate the parameters of the
angles of view and the main axis of the camera in the panoramic system. They
perform transformations of coordinates and vectors, taking into account their
initial positions and rotations relative to the coordinate system associated
with the panoramic system. Then, using the found parameters, the points
indicating the angles of view of each camera are determined, as well as the
point representing the main axis of the camera. These steps allow us to
determine the position and direction of view of each camera in the context
of the panoramic system.

Angle of View: This method calculates the vertical angle of view of
the camera. Let’s consider the mathematics of this process.

Let 𝑓 be the focal length of the camera lens, and 𝐻 be the height of
the camera’s focal plane. We want to find the vertical angle of view 𝜃vertical,
which determines how many degrees vertically the camera covers.

Using the theorem of similar triangles, we understand that the vertical
angle of view can be expressed as double the arctangent of the ratio of the
height of the focal plane to twice the focal length:

𝜃vertical = 2× arctan

(︂
𝐻

2𝑓

)︂
Thus, we find the angle at which the image on the focal plane is

visible relative to the central axis of the camera. This gives us an idea of
what portion of the vertical space is covered by the image.
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4.2.3 Determining ∆ Yaw and ∆ Pitch during Movement

To simulate the camera and the algorithm as a whole, it is important
to have the ability to control the camera. To control the camera in our study,
we can send ∆𝜃 and ∆𝜑 (yaw and pitch changes) to our camera (simulated
or real).

1. Central point of the field of view angles:
Find the central point between two field of view (FOV) angles:
Let 𝑃1 and 𝑃2 be the two field of view angles of the camera, then the

central point 𝐶 will be:

𝐶 =

(︂
𝑃1𝑥 + 𝑃2𝑥

2
,
𝑃1𝑦 + 𝑃2𝑦

2

)︂
2. Calculation of the angle:
Calculate the tilt angle of the camera relative to the horizon and the

vertical angle of view of the camera:
Let (𝑥𝑐, 𝑦𝑐) be the coordinates of the camera, (𝑥𝑖, 𝑦𝑖) the initial

position, and (𝑥𝑡, 𝑦𝑡) the target position. Also, ℎ is the height of the camera,
and 𝜃pitch the vertical angle of view, 𝜃0 the current vertical tilt angle, and
𝜃top_aov the angle between the highest incoming light ray on the camera and
the main axis of the camera (𝐴𝑂𝑉vert/2).

First, determine the camera’s yaw angle, using direction vectors from
the camera to the initial and target positions:

∆𝜃yaw = atan2(𝑦𝑡 − 𝑦𝑐, 𝑥𝑡 − 𝑥𝑐)− atan2(𝑦𝑖 − 𝑦𝑐, 𝑥𝑖 − 𝑥𝑐)

Then calculate the pitch angle, which is the tilt angle of the camera
relative to the horizon for:

𝜃pitch = 90∘ − toDegrees(arctan(
|(𝑥𝑡 − 𝑥𝑐, 𝑦𝑡 − 𝑦𝑐)|

ℎ
))

∆𝜃pitch = 𝜃pitch − 𝜃top_aov − 𝜃0

Here, atan2 is the arc-tangent function of two arguments, ‖ · ‖ is the
vector norm, and mod is the modulo operation.

26



4.2.4 Player Detection inside of a Field of View

It is already mentioned, that the algorithm is able to infer how close
the center of FOV to the target position, but the algorithm also have a player
detection module for future algorithm enhancements (for example: awaiting
for the moment when player view is not obstructed by other players).
Algorithm : is_agent_ins ide_fov
Input : Point (x , y ) , Tetragon [ point1 , point2 , point3 , po int4 ]
Output : True i f the po int i s i n s i d e the fov , o the rw i se Fa l se

1 : begin
2 : I n i t i a l i z e windingNumber <− 0
3 : I n i t i a l i z e te t ragon <− [ point1 , point2 , point3 , po int4 ]

4 : f o r i from 0 to te t ragon . s i z e − 1 do
5 : x1 , y1 <− tet ragon [ i ]
6 : x2 , y2 <− tet ragon [ ( i + 1) mod tet ragon . s i z e ]

7 : i f y1 <= y then
8 : i f y2 > y then
9 : i f i s_ l e f t_o f_ l i n e ( ( x1 , y1 ) , ( x2 , y2 ) , (x , y ) ) then
10 : windingNumber <− windingNumber + 1
11 : end i f
12 : end i f
13 : e l s e
14 : i f y2 <= y then
15 : i f i s_ l e f t_o f_ l i n e ( ( x1 , y1 ) , ( x2 , y2 ) , (x , y ) ) then
16 : windingNumber <− windingNumber − 1
17 : end i f
18 : end i f
19 : end i f
20 : end f o r

21 : re turn (windingNumber != 0)
22 : end

4.3 Algorithm Development for the Case of Moving Players

4.3.1 Master-Route Baseline

The basic algorithm is to pass the camera over the field in a
"snake"pattern. The camera sequentially surveys each strip of the observable
field, moving from the left edge of the field to the right, and then from
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Рисунок 4.3 — General Pipeline

the right edge of the field to the left. This algorithm is easily implemented
once the framework from section 4.4.2 has been implemented. To cover all
players, the camera can be approximated along the path when the algorithm
determines that the player is close enough to its initial territory.
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4.3.2 KNN-Greedy Algorithm

Algorithm : Camera Movement to Track Players
Input : L i s t o f p l aye r s with coo rd ina t e s
Output : Camera movement plan to v i s i t each p laye r

1 : I n i t i a l i z e camera
2 : Set camera aim to the r e s u l t o f c a l c_pr in c i pa l_ax i s_ in t e r s e c t i on ( )
3 : I n i t i a l i z e unv i s i t ed_p laye r s as a copy o f p l aye r s

4 : whi l e the re are unv i s i t ed p l aye r s do
5 : p laye r <− get_c loses t_player ( camera . aim , unv i s i t ed_p laye r s )
6 : Remove p laye r from unv i s i t ed_playe r s
7 : camera_target_aim <− ( p layer . x , p laye r . y )
8 : movement_plan_array <− gene ra t e_ l inea r_t ra j e c to ry ( camera . aim ,

camera_target_aim )

9 : i <− 0
10 : whi l e p laye r i s not v i s i t e d by camera f o r 3 seconds do
11 : camera . phi <− camera . phi + calc_delta_phi ( camera , camera . aim ,

movement_plan_array [ i ] )
12 : camera . theta <− camera . theta + calc_delta_theta ( camera ,

camera . aim , movement_plan_array [ i ] )
13 : i <− i + 1
14 : end whi l e
15 : end whi l e

Function calc_delta_phi ( camera , cur_aim , target_aim )
# Calcu la te the yaw adjustment
1 : in i t_vec <− [ cur_aim . x − camera . x , cur_aim . y − camera . y ]
2 : target_vec <− [ target_aim . x − camera . x , target_aim . y − camera . y ]
3 : in it_vec_angle <− vec_to_angle ( in i t_vec )
4 : target_vec_angle <− vec_to_angle ( target_vec )
5 : r e turn target_vec_angle − init_vec_angle

End Function

Function calc_delta_theta ( camera , cur_aim , target_aim )
# Calcu la te the p i t ch adjustment
1 : top_aov <− camera . p i t ch − camera . ve r t i ca l_aov
2 : target_vec <− [ target_aim . x − camera . x , target_aim . y − camera . y ]
3 : r a t i o <− norm( target_vec ) / norm( camera . he ight )
4 : raw_pitch <− to_degrees ( arctan ( r a t i o ) ) % 360 .0
5 : p i t ch <− 90 − raw_pitch
6 : re turn p i t ch − top_aov

End Function

In the above fragment, the main algorithm is described.
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4.3.3 Probability-Density-Graphs TSP

As a future enhancement such algorithm could be developed:
Assume we know the player graph at time t. The features of the

vertices in this situation will be the coordinates of the players as well
as identifiers. We train an algorithm that can predict the probabilistic
distribution of each player’s position over the sequence [0,𝑡] (the simplest
case being a 2-dimensional Gaussian, i.e., standard normal distribution), then
the goal for the camera can be set to focus on the 95% confidence interval
at time t+k, which can be calculated using the camera’s angular velocity.
The camera then focuses on the vertex so that the entire area is visible with
sufficient confidence and zooms in on a specific player (linear interpolation
of their movement can be included here). The algorithm then repeats for all
players.
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5 Results

5.1 Evaluation of Camera Traversal Algorithm

5.1.1 Metric and Experiment formulation

To evaluate the algorithm, the metric chosen is time required to
traverse through all players with stopping time on a player equal to 𝑡𝑠𝑡𝑜𝑝 = 5.
Number of players 𝑛𝑝𝑙𝑎𝑦𝑒𝑟𝑠 = 22 and 𝑛𝑖𝑡𝑒𝑟 = 100. An experiment will be ran
𝑛𝑖𝑡𝑒𝑟 of times, and the T will be the metric for the according algorithm:

𝑇 =
1

𝑛𝑖𝑡𝑒𝑟

𝑛𝑖𝑡𝑒𝑟∑︁
𝑖=1

𝑡𝑖

Note that 𝑡𝑖 is measured in simulation ticks, with conversion formula
25·𝑡𝑖 = 1 second, giving FPS (frames per second) to be 25 (𝐹𝑃𝑆 = 25). Also
statistics like standard deviation, inter-quantile range and histogram will be
displayed for further analysis. Given the fact that PTZ cameras are often
able to gather angular velocity up to 30 ∘ per second (Source), given that
in our case approximately 90 ∘ of horizontal panning is enough to traverse
the field and also we can not expect camera to be always on max speed,
we can approximate an average speed as 18 ∘ per second. Given such speed,
it is possible to traverse the field in 5 seconds, that way yielding that on
average linear speed of a camera may be roughly approximated to 20 meters
per second or 0.8 meters per one frame given a FPS of 25 frames. )

Given such framework of evaluation, it is possible to compare quality
of a baseline to the quality of the developed KNN-Greedy approach. (Possibly
delete a part about comparing)

5.1.2 Dataset

To assure that experiments are representative of the real-world
scenario, a soccer match simulation from Timur Khaibrakhmanov was used.
In the simulation, player movement is modeled with similar to real-world
laws. Despite that simulation quite accurately represents football matches,
it has a randomization component, that allows to create 𝑛𝑖𝑡𝑒𝑟 = 100

diverse simulations, that represent the soccer dynamics. On those generated

31

https://www.bit-cctv.com/products/outdoor-mini-pan-tilt-positioner-head.html
https://github.com/mikecarti/hse-cam2023/tree/main/simulation


simulations, the algorithm is tested. Algorithm only possesses the information
prior to during timestamp, thus it simulates real-world unpredictability of
players’ behavior.

5.1.3 Result of the Experiment

Таблица 5.1 — Statistics of the KNN Greedy Performance for 𝑁 = 100 in
frames

Statistic Frames for Complete Traversal

Count 100.00000
Mean 408.56000
Standard Deviation (std) 46.73919
Minimum (min) 305.00000
25th Percentile (25%) 375.75000
Median (50%) 412.50000
75th Percentile (75%) 442.25000
Maximum (max) 549.00000

Таблица 5.2 — Statistics of the KNN Greedy Performance for 𝑁 = 100 in
seconds

Statistic Seconds for Complete Traversal

Count 100.00000
Mean 16.3424
Standard Deviation (std) 1.8695676
Minimum (min) 12.2
25th Percentile (25%) 15.03
Median (50%) 16.5
75th Percentile (75%) 17.69
Maximum (max) 21.96

Using the KNN Greedy algorithm yields mean of 16.3424 seconds
for traversal of moving players in the case of 22 players on a 100 by 100
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Рисунок 5.1 — Histogram of experiment in seconds

meters region. There are some outliers, but they have relatively low deviation
from the sample mean, minimum (fastest time) is considered 12.2 seconds,
and maximum is considered 21.96 seconds. Standard deviation is almost 2
second, that equates to approximately 15% of mean, which shows robustness
of the algorithm. KDE plot is similar to the bell curve of normal distribution,
however left tail is much heavier, that can be interpreted as that there are a
lot of surprisingly faster experiments and not quite a lot of surprisingly slow
experiments (in terms of time taken to traverse all agents). One could also
add that at value of 19 seconds it seems like there is some barrier that makes
it hard for the simulation to take longer than this time, although it is just a
hypothesis and may be due to simulation specifics.

Yaw pitch dynamic graph 5.2 represents how angle may differ through
a simulation. What is worth of noting, is how pitch (tilt) changes only between
6 and 18 degrees, while yaw (panning) is spanning between 160 to 220 degrees.
It gives us a hint, of how sensitive the camera FOV to the tilt compared
to panning. Those 2 graphs completely describe the dynamics of a camera
movement in a single simulation. Times when camera stops at a single point
are almost non-visible, as it happens only for a fraction of 5 frames. There
also seen the fast spikes on pitch graph, it is for now unknown what is the
reasoning of such behavior, but one is certain, it may not be caused by
knn-greedy algorithm.
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Рисунок 5.2 — Yaw-Pitch Dynamics during the first simulation

5.2 Conclusion

In this study, we endeavored to develop and assess a camera traversal
algorithm tailored to the task of tracking moving players in a simulated
soccer match setting. Through a systematic investigation encompassing
algorithmic design, simulation, and empirical evaluation, we aimed to address
the multifaceted challenges inherent in efficient field traversal and player
tracking.

The foundational phase of our inquiry involved establishing rigorous
coordinate systems to facilitate seamless integration between the soccer field
and camera perspectives. By elucidating the transformation matrix and
elucidating the interrelation between coordinate planes, we ensured a robust
foundation upon which subsequent algorithmic developments could be built.
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Subsequently, we delved into the intricacies of camera simulation,
including the precise determination of line-plane intersections, field of view
calculations, and dynamic adjustments of yaw and pitch angles during
traversal. These components were pivotal in emulating realistic camera
behaviors, thereby enabling the faithful reproduction of real-world scenarios
within our computational framework.

The crux of our investigation lay in the algorithmic development
phase, where we explored two distinct methodologies: the master-route
baseline and the KNN-Greedy algorithm. The former provided a structured
approach to field traversal, while the latter introduced a dynamic heuristic
based on nearest-neighbor principles. Through meticulous experimentation
and evaluation, we discerned significant insights into the performance and
efficacy of each approach.

Our empirical findings revealed that the KNN-Greedy algorithm
exhibited commendable efficiency, with an average traversal time of
approximately 16.34 seconds and a standard deviation of 1.87 seconds across
100 simulation iterations. These results underscore the algorithm’s robustness
and efficacy in dynamically tracking moving players while navigating the
soccer field.

Furthermore, our analysis extended beyond quantitative performance
metrics to encompass qualitative aspects such as yaw-pitch dynamics.
By visualizing the camera’s orientation throughout the simulation, we
gained valuable insights into its adaptability and responsiveness to evolving
game scenarios, thereby elucidating avenues for further refinement and
optimization.

In summation, this study represents a rigorous exploration of camera
traversal algorithms in the context of tracking moving players in simulated
soccer matches. By leveraging mathematical principles, computational
techniques, and empirical evaluation, we have developed a sophisticated
framework that bridges theoretical concepts with practical applications.
Moving forward, continued research and refinement of these algorithms hold
the promise of advancing the efficiency, accuracy, and versatility of camera
systems in diverse sporting and surveillance domains.
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