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Modern Diffusion Models and
Their Limitations



Modern Generative Models for Images

Text prompt: woman’s transparent
futuristic inspired sneakers, glitter,

depth of field

Kandinsky

Text prompt: Chicken with
potatoes baked in mayonnaise-sour

cream sauce

Shedevrum

Text prompt: 1967 Dodge Charger,
moody lighting, side view, black,
front view, lobby of the Louvre ...

midjourney
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Principal Approaches to Generative Modeling
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Diffusion Models12

Main idea: reverse the data noising process.

Forward diffusion (noising SDE)
Take a data distribution x0 ∼ p0 and gradually turn

it to noise distribution xT ∼ pT = N (0, σ2I).

dxt = f (xt , t)dt + g(t)dWt

(e.g., dxt = − 1
2 βt dt +

√
βt dWt )

Reverse diffusion (denoising SDE)
Sample from noise distribution xT ∼ pT
and reverse the diffusion to get x0 ∼ p0:

dxt =[f (xt , t) − g2(t)∇x log p(xt , t)]dt + g(t)dWt

(or dxt =[f (xt , t) − 1
2 g2(t)∇x log p(xt , t)]dt)

1Jonathan Ho, Ajay Jain, and Pieter Abbeel (2020). “Denoising diffusion probabilistic models”. In: Advances
in neural information processing systems 33, pp. 6840–6851.
2Yang Song et al. (2020). “Score-Based Generative Modeling through Stochastic Differential Equations”. In:

International Conference on Learning Representations.
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Limitation 1 of Diffusion Models: Time-Consuming Inference

To simulate the denoising process:

xt =
[
f (xt , t) − g2(t)∇x log p(xt , t)

]
t + g(t)W t

one uses the discretization (e.g., Euler-Maruyama simulation):

xt−∆t = xt −
[
f (xt , t) − g2(t)∇x log p(xt , t)

]
∆t + g(t)

√
∆tξt , ξt ∼ N (0, I).

Remark:
NFE (# function evaluations) ≡ (# discretization steps) Diff. models performance,

CIFAR-10. FID w.r.t NFE.
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Desire 1: Straightening The Trajectories of Diffusion Models

What we have

Not straight (deterministic or stochastic)
trajectories, which are HARD to simulate.

What we want

Straight (deterministic?) trajectories, which
are EASY to simulate.

6



Limitation 2: Inapplicability to (Unpaired) Domain Translation

The task: learn (from samples) a translation map between the two given data domains.

Important: the map should generalize to new data (similar to the train set).

Example 1: Image Super-Resolution Example 2: Style Translation
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Desire 2: Be able to Solve Unpaired Domain Translation with DMs3

Supervised
Paired train samples are available:

{(x1, y1), . . . , (xN , yN)}.

Conditional DMs are applicable.

Unsupervised (our interest)
Only unpaired train samples are given:

{x1, . . . , xN}, {y1, . . . , yM}.

DMs are not applicable.
3Jun-Yan Zhu et al. (2017). “Unpaired image-to-image translation using cycle-consistent adversarial networks”.

In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232.
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Schrödinger Bridges vs. Diffusion Models: Key Differences

Diffusion models framework (2019)
• maps given complex data distribution

to the normal distribution.

• uses pre-defined noising process and
learns the de-noising process.

• requires infinite time horizon [0, T ].

Schrödinger bridge framework (2021)
• maps arbitrary distribution p0 to

arbitrary distribution p1.

• learns a diffusion that is maximally
similar to a given prior process.

• finite time horizon [0, 1
∥
T

].
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Optimal Transport and
Schrödinger Bridges



Monge’s Formulation of Optimal Transport4 (with the Quadratic Cost)

The optimal transport cost between distributions p0, p1 ∈ P2,ac(RD) is

Cost(p0, p1) = inf
T♯p0=p1

∫
X

∥x0 − T (x0)∥2

2 p0(x0)dx0.

The map T ∗ attaining the minimum is called the optimal transport map.

Optimal map Not optimal map

4Cédric Villani (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business Media.
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Optimal transport applications

Domain Translation.2

By considering two unpaired image datasets
as samples from p0 and p1, OT learns a map

between datasets that preserves content.

Single-Cell (SC) Biological data.3

SC technology determines the gene expression
profile of each measured cell, but destroys all
measured cells. OT learns a map between cell
populations before and after the perturbation.

5 6
5Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev (2022). “Neural Optimal Transport”. In: The

Eleventh International Conference on Learning Representations.
6Charlotte Bunne et al. (2023). “Learning single-cell perturbation responses using neural optimal transport”.

In: Nature Methods, pp. 1–10.
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Entropic Optimal Transport (OT)7

Consider two distributions p0, p1 ∈ P2,ac(RD).
Entropic OT (EOT) is formulated as follows:

inf
π∈Π(p0,p1)

∫
RD

C
(
x0, π(·|x0)

)
p0(x0)dx0.

The minimizer π∗ is called the Entropic OT plan.

C
(
x0, π(·|x0)

)def=
∫
RD

∥x0 − x1∥2

2︸ ︷︷ ︸
Dissimilarity

π(x1|x0)dx1−ϵ H(π(·|x0))︸ ︷︷ ︸
Diversity

.

Regularization strength ϵ controls the diversity.
• Π(p0, p1) are distributions on RD × RD with marginals p0, p1

Stochastic EOT maps for large ϵ.

Stochastic EOT maps for small ϵ.

7Marco Cuturi (2013). “Sinkhorn distances: Lightspeed computation of optimal transport”. In: Advances in
neural information processing systems 26. 12



Schrödinger Bridge (SB) problem8

Consider two distributions p0, p1 ∈ P2,ac(RD).
The Schrödinger bridge problem is:

inf
T∈F(p0,p1)

KL(T∥W ϵ),

• F(p0, p1) are stochastic processes with marginals
p0, p1 at t = 0 and t = 1 respectively.

• W ϵ is the Wiener process with the variance ϵ.

The process T ∗ attaining the minimum has
joint distribution πT ∗= π∗ at time moments
t = 0, 1 which is the solution to the Entropic

OT with regularization parameter ϵ.

8Erwin Schrödinger (1931). Über die umkehrung der naturgesetze. Verlag der Akademie der Wissenschaften in
Kommission bei Walter De Gruyter u. Company, 1931.
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Applications of Schrödinger Bridge

Single-cell biological data.9

Solving SB allows to reconstruct the
most likely cell trajectories.

Generation and Domain
Translation.10

Solving SB between noise and data
with small ϵ gives diffusion with

”straighter” trajectories. Tf : dXt = f (Xt , t)dt +
√

ϵdWt , X0 ∼ p0,
910

9Hugo Lavenant et al. (2024). “Toward a mathematical theory of trajectory inference”. In: The Annals of
Applied Probability 34.1A, pp. 428–500. doi: 10.1214/23-AAP1969.
10Valentin De Bortoli et al. (2021). “Diffusion schrödinger bridge with applications to score-based generative
modeling”. In: Advances in Neural Information Processing Systems 34, pp. 17695–17709.

14

https://doi.org/10.1214/23-AAP1969


Part I. Light Schrödinger Bridge
(ICLR 2024)



Light SB outline.

1. Motivation of light SB solvers.
2. Equivalence of SB and EOT problems.
3. Characterisation of SB and EOT solutions.
4. Derivation of the LightSB functional.
5. Gaussian mixture parameterization of Schrödinger Bridges.
6. LightSB training and inference.
7. Experimental Illustrations.
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Motivation of light SB solvers

Expectation.

We solve the Scrhödinger Bridge, and it
• maps arbitrary distribution p0 to

arbitrary distribution p1.

• provides a diffusion that is maximally
similar to a given prior process.

Reality.

It is hard to solve the Schrödinger Bridge.
• Many neural-network-based algorithms,

almost all of which are poorly scalable
and require painful iterative or
adversarial learning.

• Absence of simple baseline algorithm,
which works fast, provably solves
Schrödinger Bridge in moderate
dimensions and does not require
time-consuming hyperparameter
selection.

With this in mind, we started to search for possible solutions.
16



List of key existing not light SB solvers

See the following benchmark paper for a survey of the field in 2023:
• Nikita Gushchin, Alexander Kolesov, Petr Mokrov, et al. (2023). “Building the Bridge of Schr\” odinger: A Continuous

Entropic Optimal Transport Benchmark”. In: Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track. url: https://openreview.net/forum?id=OHimIaixXk

A (not comprehensive) list of related works is as follows:
1. MLE-SB: Francisco Vargas et al. (2021). “Solving schrödinger bridges via maximum likelihood”. In: Entropy 23.9,

p. 1134
2. DSB: Valentin De Bortoli et al. (2021). “Diffusion schrödinger bridge with applications to score-based generative

modeling”. In: Advances in Neural Information Processing Systems 34, pp. 17695–17709
3. ENOT: Nikita Gushchin, Alexander Kolesov, Alexander Korotin, et al. (2024). “Entropic neural optimal transport via

diffusion processes”. In: Advances in Neural Information Processing Systems 36
4. FB-SDE: Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou (2022). “Likelihood Training of Schrödinger Bridge

using Forward-Backward SDEs Theory”. In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=nioAdKCEdXB

5. DSBM: Yuyang Shi et al. (2023). “Diffusion Schrödinger Bridge Matching”. In: Thirty-seventh Conference on Neural
Information Processing Systems. url: https://openreview.net/forum?id=qy07OHsJT5

6. ASBM: Nikita Gushchin, Daniil Selikhanovych, et al. (2024). “Adversarial Schrödinger Bridge Matching”. In: The
Thirty-eighth Annual Conference on Neural Information Processing Systems. url:
https://openreview.net/forum?id=L3Knnigicu
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Schrodinger Bridge formulation11

The Schrödinger Bridge problem
For two continuous distributions p0 and p1 on

RD , the Schrödinger bridge problem is:

inf
T∈F(p0,p1)

KL(T∥W ϵ).

Here F(p0, p1) are stochastic processes with
marginals p0, p1 at t = 0 and t = 1.

Here W ϵ wiener process with the variance ϵ, i.e., it
is a stochastic process with the stochastic differential
equation (SDE): dXt = √

ϵdWt .

Figure 1: Wiener process with ϵ = 1.
11Yongxin Chen, Tryphon T Georgiou, and Michele Pavon (2016). “On the relation between optimal transport
and Schrödinger bridges: A stochastic control viewpoint”. In: Journal of Optimization Theory and Applications
169, pp. 671–691. 18



Decomposition of SB on inner and outer parts

Schrödinger Bridge formulation.
For two continuous distributions p0 and p1 on

RD , the Schrödinger bridge problem is:

inf
T∈F(p0,p1)

KL(T∥W ϵ).

Here F(p0, p1) are stochastic processes with
marginals p0, p1 at t = 0 and t = 1. W ϵ is a

Wiener process with the variance ϵ.

Let πT denote the joint distribution of a stochastic
process T at time moments t = 0, 1.

Let T|x,y denote the stochastic processes T condi-
tioned on values x , y at times t = 0, 1, respectively.

We can expand the functional as follows:

KL(T ||W ϵ) = KL(πT ||πW ϵ

)︸ ︷︷ ︸
outer part

+

∫
KL(T|x0,x1 ||W ϵ

|x0,x1 )dπT (x0, x1)︸ ︷︷ ︸
inner part

.

Here W ϵ
|x0,x1 is a Wiener processconditioned on its end

and start points. It is known as the Brownian Bridge.
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Schrödinger Bridge is a reciprocal process

Brownian Bridges
The process W ϵ

|x0,x1 is a Brownian Bridge. It is
a Gaussian process starting at x0 and ending

at x1.

We can set to zero the inner part by searching process
in the form of a mixture of Brownian Bridges, i.e.
T =

∫
W ϵ

|x0,x1 dπT (x0, x1).

Such processes form reciprocal class, and for brevity,
we just call them reciprocal processes.

In this case:

KL(T ||W ϵ) = KL(πT ||πW ϵ

)︸ ︷︷ ︸
outer part

+

∫
KL(T|x0,x1 ||W ϵ

|x0,x1 )dπT (x0, x1)︸ ︷︷ ︸
=0,sinceT|x0,x1 =W ϵ

|x0,x1

.
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Equivalence between EOT and SB

For a reciprocal T , the objective is

KL(T ||W ϵ) = KL(πT ||πW ϵ)︸ ︷︷ ︸
outer part

.

Hence,

inf
T∈F(p0,p1)

KL(T ||W ϵ) = inf
T∈F(p0,p1)

KL(πT ||πW ϵ).

By expanding the outer part, we obtain:

KL(πT ||πW ϵ) =∫
X ×Y

||x − y ||2

2ϵ
dπT (x , y) − H(πT )︸ ︷︷ ︸

equvivalent to EOT functional.

+C .

Entropic OT.

Schrödinger Bridge.
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Characterization for EOT and SB solutions.

Moreover, both solutions for EOT and SB problems are characterized by the starting
distribution p0 and one scalar-valued function v∗.

EOT solution.
The EOT solution π∗ can be represented through
the input density p0 and a function v∗ : RD → R+:

π∗(x0, x1) =
p0(x0)︸ ︷︷ ︸
=π∗(x0)

· exp
(
⟨x0, x1⟩/ϵ

)
v∗(x1)cv∗ (x0)︸ ︷︷ ︸

=π∗(x1|x0)

,

where cv∗ (x0) =
∫
RD exp

(
⟨x0, x1⟩ϵ

)
v∗(x1)dy .

Here v∗ is the adjusted Schrödinger potential.

SB solution.
The solution T ∗ for the Schrödinger Bridge is a
Markovian process given by the following SDE:

dXt = g∗(Xt , t)dt +
√

ϵdW ϵ
t , X0 ∼ p0

In turn, the optimal drift g∗(xt , t) is given by:

g∗(xt , t) = ϵ∇xt log
( ∫

RD
N (x ′|xt , (1 − t)ϵID)

exp
(∥x ′∥2

2ϵ

)
v∗(x ′)dx ′

)
,

i.e., is a convolution with the adjusted potential v∗.

22



Theoretical summary.

Equivalence of EOT and SB problems.

We can solve SB by solving the related EOT problem since:

inf
T∈F(p0,p1)

KL(T ||W ϵ) = inf
T∈F(p0,p1)

KL(πT ||πW ϵ) = inf
π∈Π(p0,p1)

KL(π||πW ϵ),

where Π(p0, p1) is a set of joint distributions on t = 0 and t = 1 with marginals p0 and p1.

Optimal form of the solution.

π∗(x0, x1) = p0(x0)︸ ︷︷ ︸
=π∗(x0)

· exp
(
⟨x0, x1⟩/ϵ

)
v∗(x1)cv∗(x0)︸ ︷︷ ︸

=π∗(x1|x0)

,

Still not obvious how to solve. The EOT problem:

inf
π∈Π(p0,p1)

KL(π||πW ϵ) = inf
π∈Π(p0,p1)

∫
RD×RD

||x − y ||2

2ϵ
dπT (x , y) − H(πT ) + C .

is a constrained optimization problem, and we do not know how to parametrize a set Π(p0, p1).
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Direct optimization of KL with the solution.

Our new objective:

Instead of trying to solve the constrained optimization problem of EOT, let’s just minimize KL
with the solution π∗:

arg min
π∈Π(p0,p1)

KL(π||πW ϵ)︸ ︷︷ ︸
constrained optimization

→ arg min
π

KL(π∗||π)︸ ︷︷ ︸
unconstrained optimization

The problem: we do not know π∗.

Our proposed optimal form parametrization:

It is possible with a proper parametrization of πθ.

πθ(x0, x1) = p0(x0)πθ(x1|x0) = p0(x0)
exp

(
⟨x0, x1⟩ϵ

)
vθ(x1)

cθ(x0) .

We parameterize v∗ as vθ. In turn, cθ(x0) =
∫
RD exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)dx1 is the normalization.
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Deriving the Learning Objective

Magic of KL-divergence.

KL(π∗||πθ) =
∫
RD×RD

π∗(x0, x1) log π∗(x0, x1)
πθ(x0, x1) dx0dx1 =

C −
∫
RD×RD

π∗(x0, x1) log
exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)

cθ(x0)︸ ︷︷ ︸
πθ(x1|x0)

dx0dx1 = C −
∫
RD×RD

π∗(x0, x1)
(
⟨x0, x1⟩/ϵ

)
dx0dx1︸ ︷︷ ︸

also constant

+

∫
RD×RD

π∗(x0, x1) log cθ(x0)dx0dx1︸ ︷︷ ︸
expectation of a function of x0

−
∫
RD×RD

π∗(x0, x1) log vθ(x1)dx0dx1︸ ︷︷ ︸
expectation of a function of x1

=

C̃ +
∫
RD

p0(x0) log cθ(x0)dx0 −
∫
RD

p1(x1) log vθ(x1)dx1︸ ︷︷ ︸
=L(θ)

= Const + L(θ).

We can estimate KL(π∗||πθ) up to a constant, which depends only on π∗. Hence, we can
directly optimize KL(π∗||πθ) knowing nothing about π∗ except its marginals p0 and p1.

25



Gaussian parametrization

The functional for optimization.

min
θ

KL(π∗||πθ) − C = min
θ

L(θ) = min
θ

∫
RD

p0(x0) log cθ(x0)dx0 −
∫
RD

p1(x1) log vθ(x1)dx1.

The problem: it is hard to compute normalization constant cθ(x0) for arbitrary potential vθ.

Gaussian parametrization of adjusted Schrödinger potential.

We recall that:

πθ(x1|x0) =
exp

(
⟨x0, x1⟩/ϵ

)
vθ(x1)

cθ(x0) ,

For x = 0, we have πθ(x1|0) = vθ(x1)
cθ(x0) , i.e. vθ(x1) is an unnormalized density.

=⇒ Let us approximate vθ by a Gaussian mixture:

vθ(x1) def=
K∑

k=1

αkN (x1|rk , Sk),

where θ
def= {αk , rk , Sk}K

k=1 are the parameters: αk ≥ 0, rk ∈ RD and symmetric 0 ≺ Sk ∈ RD×D .
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Gaussian parametrization

Conditional distribution for the Gaussian mixture parametrization.

For a Gaussian mixture approximation vθ(x1) def=
∑K

k=1 αkN (x1|rk , Sk), it holds that

πθ(x1|x0) = 1
cθ(x0)

K∑
k=1

α̃k(x0)N (x1|rk(x0), ϵSk) where rk(x0) def= rk + Skx0,

α̃k(x0) def= αk exp
(xT

0 Skx0 + 2rT
k x0

2ϵ

)
, cθ(x0) def=

K∑
k=1

α̃k(x0).

The functional for optimization.

min
θ

KL(π∗||πθ) − C = min
θ

L(θ) = min
θ

∫
RD

p0(x0) log cθ(x0)dx0 −
∫
RD

p1(x1) log vθ(x1)dx1.

With such parametrization, we can easily estimate and optimize our objective.

27



Training

The functional for optimization:

min
θ

L(θ) = min
θ

∫
RD

p0(x0) log cθ(x0)dx0 −
∫
RD

p1(x1) log vθ(x1)dx1.

The empirical functional for optimization.

As the distributions p0, p1 are accessible only via samples X 0 = {x1
0 , . . . , xN

0 } ∼ p0 and
X 1 ={x1

1 , . . . , xM
1 }∼p1, we optimize the empirical counterpart of L(θ):

L̂(θ) def= 1
N

N∑
n=1

log cθ(xn
0 ) − 1

M

M∑
m=1

log vθ(xm
1 ) ≈ L(θ).

We use the (minibatch) gradient descent w.r.t. parameters θ.

28



EOT-based inference

Sampling starting and ending points.
The conditional distributions πθ(x1|x0) are mix-
tures of Gaussians:

πθ(x1|x0) = 1
cθ(x0)

K∑
k=1

α̃k(x0)N (x1|rk(x0), ϵSk)

Sampling of the pair (x0, x1) is straightforward
and lightspeed.

Inner trajectory sampling.

To sample trajectory x0, xt1 , . . . , xtL , x1 with 0 <

t1 < · · · < tL < 1 it is enough to sample from
the Brownian Bridge W ϵ

|x0,x1
.

Brownian Bridge.
The process W ϵ

|x0,x1 is a Brownian Bridge. It is a
Gaussian process starting at x0 and ending at x1.

29



SDE-based inference

SDE form of the learned process.

The process Tθ given by the potential vθ is a diffusion process governed by the following SDE:

Tθ : dXt = gθ(Xt , t)dt +
√

ϵdWt , X0 ∼ p0,

gθ(x , t) def= ϵ∇x log
(
N (x |0, ϵ(1 − t)ID)

K∑
k=1

{
αkN (rk |0, ϵSk)N (h(x , t)|0, At

k)
})

,

with At
k

def= t
ϵ(1−t) ID + S−1

k
ϵ and hk(x , t) def= 1

ϵ(1−t) x + 1
ϵ S−1

k rk .

• Any SDE solver can be applied to the sample from this SDE, e.g. Euler-Maruyama.
• EOT-based sampling is always better since it is the analytical solution of this SDE.

30



Summary

We developed a blazing-fast method for solving the Schrödinger Bridge problem.

The method is based on:

1. New loss function for training the Schrödinger bridge:

L(θ) =
∫
RD

log cθ(x0)p0(x0)dx0 −
∫
RD

log vθ(x1)p1(x1)dx1, cθ(x0) =
∫
RD

exp
(
⟨x0, x1⟩/ϵ

)
vθ(x1)dx1,

where vθ is an adjusted Schrödinger potential which completely defines the entire Schrödinger Bridge Tθ .

2. Optimal parameterization of the Schrödinger bridge using mixtures of Gaussians:

vθ(x1) =
K∑

k=1

αkN (x1|rk , Sk), cθ(x0) =
K∑

k=1

αk exp
(xT

0 Skx0 + 2rT
k x0

2ϵ

)
.

Our method’s advantages:

• Fast training (< 1 minute on 4 CPU cores, not hours of training on GPU, like others).
• Theoretical validity (in this work we prove the guarantees of the method’s learning ability from

the point of view of statistical learning theory and approximation theory).
31



Experimental results

1. Qualitative results of our algorithm applied to 2D model distributions (”Gaussian” → ”swiss-roll”).

(a) x ∼ p0, y ∼ p1. (b) ϵ = 2 · 10−3. (c) ϵ = 0.01. (d) ϵ = 0.1.

2. Quantitative results of our solver on the standard benchmark for the Schrödinger bridge problem.
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Experiments with Single-cell data12

3. Quantitative results in the problem of predicting single-cell trajectories in the feature space
(single-cell trajectory inference).

12Alexander Y Tong et al. (2024). “Simulation-Free Schrödinger Bridges via Score and Flow Matching”. In:
International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1279–1287.
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Unpaired Image translation in latent space

4. Qualitative results of the method for solving the unpaired domain translation problem (in
the latent space of the ALAE autoencoder13).

The latent space size is 512. Images resolution is 1024x1024.

13Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto (2020). “Adversarial latent autoencoders”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14104–14113.
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Thank you

Light Schrödinger Bridge (ICLR 2024)
The novel light and fast algorithm

to solve the Schrödinger Bridge problem.

https://github.com/ngushchin/LightSB
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Part II. Light and Optimal
Schrödinger Bridge Matching
(ICML 2024)



Reciprocal and Markovian processes

Let F denote the set of all stochastic processes in RD for time interval [0, 1] with continuous
trajectories {xt}t∈[0,1]. Recall that we already use F(p0, p1) ⊂ F to denote its subset of
processes whose marginals at times t = 0, 1 are p0 and p1, respectively.

Reciprocal processes Let R ⊂ F denote the subset of reciprocal processes, i.e., those
processes can be represented as mixtures of Brownian bridges:

T ∈ R ⇔ ∃π = πT ∈ P(RD × RD) s.t. T = Tπ
def=

∫
W ϵ

|x0,x1
π(x0, x1)dx0dx1.

We use R(p0, p1) to denote its subset of processes which satisfy πT ∈ Π(p0, p1).

Markov Processes Let M ⊂ F denote the subset of Markovian processes, i.e.,

T ∈ M ⇔ ∀N > 1, 0 ≤ t1 < · · · < tN ≤ 1 : pT (xtN |xtN−1 . . . , x1) = pT (xtN |xtN−1).

In turn, let M(p0, p1) denote its subset of processes which satisfy πT ∈ Π(p0, p1).
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Schrödinger Bridge is both Markovian and Reciprocal Process

In fact, we already know that T ∗ ∈ M(p0, p1) ∩ R(p0, p1). Indeed,

• We already derived that SB T ∗ is a mixture of Brownian Bridges W ϵ
|x0,x1

:

T ∗ =
∫

W ϵ
|x0,x1

π∗(x0, x1)dx0dx1 ∈ M ∩ R,

where π∗(x0, x1) is the EOT plan. Therefore, T ∗ ∈ R(p0, p1) ⊂ R.
• We have already seen that the solution T ∗ is a diffusion process:

dXt = g∗(Xt , t)dt +
√

ϵdW ϵ
t , X0 ∼ p0

for some drift g∗. Therefore, T ∗ is Markovian, i.e., T ∗ ∈ M(p0, p1) ⊂ M.
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Iterative Projections onto the Sets of Interest

The Schrödinger Bridge has an awesome property14: it is the unique process (starting at p0
and ending at p1) that satisfies both the markovian and reciprocal property, i.e.,

{T ∗} = M(p0, p1) ∩ R(p0, p1).

Idea: why not to try to find the process that is both markovian
and reciprocal by using some sort of projections onto Reciprocal
R(p0, p1) and Markovian M(p0, p1) sets of processes?

Note: The subset R ⊂ F is convex, while M ⊂ F is, in general, not convex.
The latter statement is not obvious and is a good excersize to think about.

14Christian Léonard (2014). “A survey of the Schrödinger problem and some of its connections with optimal
transport”. In: Discrete & Continuous Dynamical Systems-A 34.4, pp. 1533–1574.
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Reciprocal Projection

The projection is defined for every T ∈ F as follows:

projR(T ) def= argminR∈RKL(T∥R).

One may easily prove that the reciprocal projection creates a mixture of Brownian Bridges
W ϵ

|x0,x1
with the distribution πT of a stochastic process T ∈ F at times t = 0, 1, i.e.,

projR(T ) =
∫

W ϵ
|x0,x1

πT (x0, x1)dx0dx1.

The projection depends only on πT (transport plan) rather than on the entire process T .
Furthermore, πprojR(T ) = πT , i.e., this transport plan is preserved during the projection.
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Markovian Projection

The projection is defined for reciprical processes T = Tπ ∈ R as follows:

projM(T ) def= argminM∈MKL(T∥M).

It finds the diffusion process TM which is the most similar to Tπ:

The drift of the Markovian projection is: gM
def= arg ming

∫ 1
0 E(xt ,x1)∼Tπ

||g(xt , t) − x1−xt
1−t ||2dt.

The markovian projections preserves the marginals of the process at every time t (including
t = 0, 1), but alters the transport plan, i.e., πT ̸= πTM (unless T is the Schrodinger Bridge).
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Reciprocal and Markovian projections

Reciprocal projection
• Defined for any process T ∈ F :

projR(T ) def= argminR∈RKL(T∥R)

• Yields a mixture of Brownian Bridges:∫
W ϵ

|x0,x1 πT (x0, x1)dx0dx1

Markovian projection
• Defined for a reciprocal process Tπ ∈R:

projM(Tπ) def= argminM∈MKL(Tπ∥M)

• Yields a diffusion with the SDE

dxt = gM(xt , t)dt +
√

ϵdWt , x0 ∼ p0.

Bridge matching = combination of Reciprocal and Markovian Projections

It is a popular way to learn diffusion processes between data distributions p0, p1. 41



Flow Matching and Bridge Matching: a Reminder

Flow matching is a limiting case of the Bridge Matching when ϵ → 0.
Flow Matching

xt = g(xt , t)t

Define interpolation: xt
def= x0 ·(1−t) + x1 ·t.

min
g

E
x0 ∼ p0
x1 ∼ p1

E
t∼[0,1]

∥∥∥g(xt , t) − (x1 − x0)
∥∥∥2

.

Can be iterated to straighten the flows.
Related to the Optimal Transport (OT).

Bridge Matching

xt = g(xt , t)t +
√

ϵWt (ϵ > 0).

Define a distribution: pϵ
t

def= N
(
xt , ϵt(1−t)

)
min

g
E

x0 ∼ p0
x1 ∼ p1

E
t∼[0,1]

E
x̃t ∼pϵ

t

∥∥∥g(x̃t , t) − x1 − x̃t
1 − t

∥∥∥2
.

Can be iterated and converges to the
Schrödinger bridge. 42



Iterative Markovian Fitting (IMF)1516

Alternating Markovian and Reciprocal projections is called the Iterative Markovian Fitting
(IMF) procedure, or, alternatively, Iterative Diffusion Bridge Matching (IDBM).

Starting from a reciprocal process T0 =
∫

W ϵ
|x0,x1

dπ(x0, x1) induced by some initial plan
π(x0, x1), one performs iterative updates

T 2n+1 = projM(T 2n), T 2n+2 = projR(T 2n+1)

The sequence {T n}∞
n=1 converges to the Schrodinger Bridge T ∗:

limn→+∞KL(T n∥T ∗) = 0.

15Stefano Peluchetti (2023). “Diffusion bridge mixture transports, Schrödinger bridge problems and generative
modeling”. In: Journal of Machine Learning Research 24.374, pp. 1–51.
16Yuyang Shi et al. (2023). “Diffusion Schrödinger Bridge Matching”. In: Thirty-seventh Conference on Neural
Information Processing Systems. url: https://openreview.net/forum?id=qy07OHsJT5.
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Iterative Markovian Fitting: An Illustration

Limitations: The procedure is iterative, i.e., it requires many bridge matching steps.

• Each bridge matching step is a non-trivial drift learning (optimization) procedure.
• Errors in matching the target (p1) may accumulate during IMF steps.17

17Rectified flow is a limiting case of the IMF when → 0.
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Optimal Schrödinger Bridge Matching18

While IMF performs iterative Bridge Matching (reciprical and Markovian projections) to
recover SB, we propose a novel concept of the optimal projection. It Recovers the
Schrödinger Bridge T ∗ is just one iteration of the Bridge Matching.

18Nikita Gushchin, Sergei Kholkin, et al. (n.d.). “Light and Optimal Schrödinger Bridge Matching”. In:
Forty-first International Conference on Machine Learning.
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Optimality of the ”Optimal Projection”

Projection on the set S of SBs or ”Optimal Projection” is the foundation of our method.

S def= R ∩ M.

For any reciprocal process Tπ with marginals p0 and p1, we define the optimal projection by

projS(Tπ) = argminS∈SKL(Tπ∥S)

Theorem (Optimal Projection)
Consider any reciprocal process Tπ that has marginals p0 and p1 at t = 0 and t = 1,
respectively. Then the Optimal Projection yields the Schrödinger Bridge T ∗, i.e.,

T ∗ = projS(Tπ).

Looks nice, but how to implement this projection in practice? How to optimize over S ∈ S?
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Characterization for EOT and SB solutions: a Reminder

The solutions for SB problems can be characterized by two things:

1. the starting distribution p0;
2. the scalar-valued function v (potential).

More precisely, the following process (which we denote by Sv )

Sv : dXt = gv (Xt , t)dt +
√

ϵdW ϵ
t , X0 ∼ p0,

gv (xt , t) def= ϵ∇xt log
( ∫

RD
N (x ′|xt , (1 − t)ϵID) exp

(∥x ′∥2

2ϵ

)
v(x ′)dx ′

)
,

belongs to S(p0) ⊂ S and is the Schrodinger bridge between p0 and its marginal at time t = 1.
Here S(p0) denotes the subset of all Schrodinger Bridges which start at p0.

Idea: optimize arg minS∈S(p0) KL(Tπ∥Sv ) instead of arg minS∈S KL(Tπ∥S).19

19These problems lead to the same solution T ∗ ∈ S(p0) ⊂ S.
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Tractable Optimization Objective for the Optimal Projection

Optimal projection can be implemented using the constrained Bridge matching procedure.
Theorem (Tractable Objective for Optimal Projecton)
Consider set of SBs that start at p0, i.e., Sθ ∈ S(p0). Let reciprocal process Tπ be a
reciprocal process. Then the optimal projection objective satisfies

KL(Tπ∥Sv ) = C(π) + 1
2ϵ

∫ 1

0
E(xt ,x1)∼Tπ

∥gv (xt , t) − x1 − xt
1 − t ∥2dt︸ ︷︷ ︸

Bridge Matching

,

where
gv (xt , t) def= ϵ∇xt log

( ∫
RD

N (x ′|xt , (1 − t)ϵID) exp
(∥x ′∥2

2ϵ

)
v(x ′)dx ′

)
is the the drift of Sv . Here constant C(π) does not depend on Sv .

Nice, but how to compute drift gv and optimize this objective?
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Optimal Drift Computation Problem

For general parameterization of the potential v , e.g., with a neural network vθ, the
computation of the drift gv = gvθ

is tricky, so is the computation of the loss. It requires tricky
Monte Carlo Markov Chain techniques (MCMC), see the appendices of the paper.20

Fortunately, for a Gaussian mixture parameterization (as in LightSB)
vθ(x1) def=

∑K
k=1 αkN (x1|rk , Sk), the drift gvθ

is available in the closed form

gvθ
(xt , t) = ϵ∇x (N (x |0, ϵ(1 − t)ID)

K∑
k=1

{αkN (rk |0, ϵSk)N (hk(x , t)|o, At
k)}.

Then we can implement the optimal Projection by optimizing

θ∗ = arg min
θ

KL(Tπ∥Svθ
) = arg min

θ

1
2ϵ

∫ 1

0
E(xt ,x1)∼Tπ

∥gθ(xt , t) − x1 − xt
1 − t ∥2dt.

We call the approach by LightSB-M. Here M stands for matching.
20Nikita Gushchin, Sergei Kholkin, et al. (n.d.). “Light and Optimal Schrödinger Bridge Matching”. In:
Forty-first International Conference on Machine Learning.
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Qualitative Experiments. 2D Swiss Roll

The process Sθ = Svθ
learned with LightSB-M in Gaussian → Swiss roll example.

(a) x ∼ p0, y ∼ p1. (b) ϵ = 0.01. (c) ϵ = 0.1. (d) ϵ = 1.
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Experiments. Quantitative SB Benchmark21

LightSB-M is the best Bridge Matching method on the SB benchmark. It has comparable
performance to LightSB. Also, it yields the same solution for different starting plans π(x0, x1):
independent (ID), mini-batch OT (MB), ground truth (GT).

ϵ = 0.1 ϵ = 1 ϵ = 10

Solver Type D = 2 D = 16 D = 64 D = 128 D = 2 D = 16 D = 64 D = 128 D = 2 D = 16 D = 64 D = 128

Best solver on SB bench† Varies 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31
LightSB† KL minimization 0.03 0.08 0.28 0.60 0.05 0.09 0.24 0.62 0.07 0.11 0.21 0.37

DSBM

Bridge matching

5.2 16.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
SF2M-Sink 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819

LightSB-M (ID, ours) 0.04 0.18 0.77 1.66 0.09 0.18 0.47 1.2 0.12 0.19 0.36 0.71
LightSB-M (MB, ours) 0.02 0.1 0.56 1.32 0.09 0.18 0.46 1.2 0.13 0.18 0.36 0.71
LightSB-M (GT, ours) 0.02 0.1 0.49 1.16 0.09 0.18 0.47 1.2 0.13 0.18 0.36 0.69

Comparisons of cBW2
2-UVP ↓ (%) between the optimal plan π∗ and the learned plan πθ on the EOT/SB benchmark.

The best metric over bridge matching solvers is bolded. Results marked with † are taken from LightSB paper.

21Nikita Gushchin, Alexander Kolesov, Petr Mokrov, et al. (2023). “Building the Bridge of Schr\” odinger: A
Continuous Entropic Optimal Transport Benchmark”. In: Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track. url: https://openreview.net/forum?id=OHimIaixXk.
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Experiments. Quantitative Evaluation on Biological Data

Predicting single-cell trajectories in the feature space.

Solver type SolverDIM 50 100 1000
Langevin-based EgNOT† [1 GPU V100] 2.39 ± 0.06 (19 m) 2.32 ± 0.15 (19 m) 1.46 ± 0.20 (15 m)

Minimax ENOT† [1 GPU V100] 2.44 ± 0.13 (43 m) 2.24 ± 0.13 (45 m) 1.32 ± 0.06 (71 m)
IPF DSB† [1 GPU V100] 3.14 ± 0.27 (8 m) 2.86 ± 0.26 (8 m) 2.05 ± 0.19 (11 m)

KL minimization LightSB† [4 CPU cores] 2.31 ± 0.27 (65 s) 2.16 ± 0.26 (66 s) 1.27 ± 0.19 (146 s)

Bridge matching

DSBM [1 GPU V100] 2.46 ± 0.1 (6.6 m) 2.35 ± 0.1 (6.6 m) 1.36 ± 0.04 (8.9 m)
SF2M-Sink [1 GPU V100] 2.66 ± 0.18 (8.4 m) 2.52 ± 0.17 (8.4 m) 1.38 ± 0.05 (13.8 m)

LightSB-M (ID, ours) [4 CPU cores] 2.347 ± 0.11 (58 s) 2.174 ± 0.08 (60 s) 1.35 ± 0.05 (147 s)
LightSB-M (MB, ours) [4 CPU cores] 2.33 ± 0.09 (80 s) 2.172 ± 0.08 (80 s) 1.33 ± 0.05 (176 s)

Table 1: Energy distance (averaged for two setups and 5 random seeds) on the MSCI dataset

LightSB-M is the best Bridge Matching method in thie experiment with Biological data. It
provides comparable performance to LightSB that is based on the KL minimization principle.
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Experiments. Comparison on Unpaired Image-to-image Transfer

Adult to Child Unpaired Translation in the latent space of ALAE22, 1024x1024 images.
22Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto (2020). “Adversarial latent autoencoders”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14104–14113.
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Summary

LightSB-M is a method to solve the SB problem in a single Bridge Matching step.
The solver is based on:

• The ”Optimal Projection” that translates any π with marginals p0 and p1 to SB
• Novel Bridge Matching-like optimization objective

Lθ(π) =
∫ 1

0
E(xt ,x1)∼Tπ ∥gθ(xt , t) − x1 − xt

1 − t ∥2dt

gθ(xt , t) = ϵ∇xt log
∫
RD

N (x ′|xt , (1 − t)ϵID) exp(∥x ′∥2

2ϵ
)vθ(x ′)dx ′

• Parameterization of the SB using mixtures of Gaussians vθ(x) =
∑K

k=1 αkN (x |rk , Sk). In this
case, gθ admits closed form expression.

LightSB-M’s advantages:

• Theoretical novelty (first method solving SB in one Bridge Matching iteration).
• Fast training (< 1 minute on 4 CPU cores, not hours of training on GPU, like others).
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Thank you

Light and Optimal Schrödinger Bridge Matching (ICML 2024)
The novel light and fast algorithm based on the bridge matching

to solve the Schrödinger Bridge problem.

https://github.com/SKholkin/LightSB-Matching
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Other works



Adversarial Schrödinger Bridge Matching23

We present Discrete in time Bridge Matching and prove that Iterative Discrete in time Bridge
Matching (D-IMF) converges to discrete in time Schrödinger Bridge.

Idea: Substitute the Bridge Matching Diffusion by the Denoising Diffusion GAN (DD-GAN). That
allows to speed up the generation x25 times while having even better quality.

23Nikita Gushchin, Daniil Selikhanovych, et al. (2024). “Adversarial Schrödinger Bridge Matching”. In: The
Thirty-eighth Annual Conference on Neural Information Processing Systems. url:
https://openreview.net/forum?id=L3Knnigicu.
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Iterative Proportional Markovian Fitting24

Practical implementation of IMF algorithm secretly utilizes another popular algorithm IPF. We
propose Iterative Proportional Markovian Fitting (IPMF) algorithm, argue that IMF used in practice
and IPF algorithms are a particular cases of IPMF.

We show empirically and in some cases theoretically that IPMF converges to the Schrödinger Bridge.
24Sergei Kholkin et al. (2024). “Diffusion & Adversarial Schr\” odinger Bridges via Iterative Proportional
Markovian Fitting”. In: arXiv preprint arXiv:2410.02601. 57
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