Structure-based
Drug Design

Sergei Evteev
Lead Scientist
FSUE VNIIA

Fall into ML 2024



The Landscape of Al-discovered Drug Candidates and Targets

Legend
Target
iy Low Moderate High
The indicated data are for 2023 Novelty 9
T R molecule failed
Pipeline O Active ® o giscontinued
Insilico Medicine Discovery Schrodinger
® o 0
. . Preclinical - ©. . © 0 "5 © ¢
=a===""coKga/sz TN _""Q--Q (@)
g g ® g ® e S w2900
e ® i Ehg” @) Phase 1 ©  weemm .. ® Recursion
BenevolentAl o e sty S BHDIE ~. .0 :
o e PHD1/2 o coe7 S Pharmaceuticals
[e) = SELHIS PCTL S
e Mg usP1 o APR  wALTY . ©
® . (@) (@) i Phase 2 oy © (e} RBM39
O C. difficile toxins
(@) % CHK1 POE10 SN0 - X
/ o @ TrkA / TrkB / TrkC MEK1T / MEK2 O b ©
o | O v
LSD1 PI3Ka '
; o PKC-theta
[®) P3Ka  gypa ‘
MALT1
. . : * > @ % Cd 4
Exscientia S > Relay
S e Therapeutics
o - e L e
@ e _ @ e ,®
Insitro @) () o © © Valo Health
Verge Genomics

www.biopharmatrend.com



Model preparation

2 2.

Hot spots identification de novo generation :



Russian Chemical Reviews, 2024, Volume 93, Issue 3, RCR5107
DOI: https://doi.org/10.59761/RCR5107 d €50 Do

AlphaFold for a medicinal chemist: tool or toy?

Ya. A. Ivanenkov@, S. A. Evteev@®, A. S. Malyshev@, V. A. Terentiev@?, D. S. BezrukovC, A. V. Ereshchenko®?, A. A. Korzhenevskaya?,
B. A. Zagribelnyy®, P. V. Shegai?, A. D. Kaprin@

@ P Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation

b Dukhov Automatics Research Institute (VNIIA), Moscow, Russian Federation

¢ Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
d Peoples' Friendship University of Russia (RUDN), Moscow, Russian Federation

English full-text

DOI: https://doi.org/10.59761/RCR5107 d

Al-based 3D protein
structure prediction

Molecular Docking

Amino Acid Sequence

H&GGTAG CTGCGTGGCTAAC
GCTGCAGCCACCGCCGCGG
CAGCGGCTTCTGCGCTGGG
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Protein with optimized
binding site

Optimization of binding site atoms
using GNN-based model trained to
distinguish  favorable positions for
protein residues and binding site
space usually occupied by ligand
structure
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Medicine

Calculate score for each atom

Select an atom

within binding site using GNN- )
with poor score

based model

Optimize residue Predict more suitable position
using MMFF94-X using GNN-based model
force field

Original Optimized

RMSD =3.7 A, Docking Score = -5.8 , 14/27 poses RMSD = 1.1 A, Docking Score = -7.1, 3/23 poses
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AlphaFold Optimizer

0 Initial TTK model
[ Optimized TTK model

Virtual screening was performed using both original and optimized Alphafold models

Among 39 compounds tested, 10 hits were found

All 10 hits were detected using optimized model while only 7 of them were detected using

original AlphaFold structure
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SiteRadar: Utilizing Graph Machine Learning for Precise Mapping of Protein—-Ligand-
Binding Sites
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Abstract

Identifying ligand-binding sites on the protein surface is a crucial step
in the structure-based drug design. Although multiple techniques have
been proposed, including those using machine learning algorithms, the
existing solutions do not provide significant advantages over
nonmachine learning approaches and there is still a big room for
improvement. The low ability to identify protein—ligand-binding sites
makes available approaches inapplicable to automated drug design.
Here, we present SiteRadar, a new algorithm for mapping cavities that
are likely to bind a small-molecule ligand. SiteRadar shows higher
accuracy in binding site identification compared with FPocket and
PUResNet. SiteRadar demonstrates an ability to detect up to 74% of
true ligand-binding sites according to the top N + 2 metric and usually
covers approximately 80% of ligand atoms. Therefore, SiteRadar can
be regarded as a promising solution for implementation into
algorithms for automated drug design.
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DeepPocket: Ligand Binding Site Detection and Segmentation
using 3D Convolutional Neural Networks

August 10, 2021 | Journal of Chemical Information and Modeling
Rishal Aggarwal, Akash Gupta, Vineeth Chelur, C. V. Jawahar, and U. Deva...

PLANET: A Multi-objective Graph Neural Network Model for
Protein-Ligand Binding Affinity Prediction

June 15, 2023 | Journal of Chemical Information and Modeling
Xiangying Zhang, Haotian Gao, Haojie Wang, Zhihang Chen, Zhe Zhang, ...
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Graph-based approach
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SiteRadar Pipeline

Input data Grid preparation

.............

Protein 3D structure

Grid annotation Clustering

GNN-based model First clustering Second clustering

Evteev S.A. et al. SiteRadar: Utilizing Graph Machine Learning for Precise Mapping of Protein-Ligand-Binding Sites. J. Chem. Inf. Model. 2023

10



Case studies

Allosteric binding site Site for covalent ligand binding

a - AA specific b - Geometric

Evteev S.A. et al. SiteRadar: Utilizing Graph Machine Learning for Precise Mapping of Protein-Ligand-Binding Sites. J. Chem. Inf. Model. 2023 11
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IN silico validation
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SiteMap

Utilizes traditional docking, diffusion and positional filters
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The Hitchhiker's Guide to Deep Learning Driven Generative Chemistry
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Abstract

This microperspective covers the most recent research outcomes of
artificial intelligence (Al) generated molecular structures from the point
of view of the medicinal chemist. The main focus is on studies that
include synthesis and experimental in vitro validation in biochemical
assays of the generated molecular structures, where we analyze the
reported structures’ relevance in modern medicinal chemistry and their
novelty. The authors believe that this review would be appreciated by
medicinal chemistry and Al-driven drug design (AIDD) communities
and can be adopted as a comprehensive approach for qualifying
different research outcomes in AIDD.
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Quantum-assisted fragment-based automated structure
generator (QFASG) for small molecule design: an in vitro

study
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NATURE-BASED GENERATOR (NBG)

Atom-wise Generation of Ligand Structures Complementary to Macromolecular Environment
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Structure generation

Heat shock protein 90-a
PDB ID 5J82

/b

Phosphatase SHP2
PDB ID 7JVM
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Structure generation

Design of new compounds

JAK1 PARP1
PDB ID 6ELR PDB ID 4777

SARS Cov2 main protease
PDB ID 8UR9
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Lifesciences
Target X (Presude Lifesciences)
e Hit compound with IC;, = 3uM was obtained
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