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Protein redesign: phosphotriesterase

Khersonsky et al., Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. Mol. Cell, 2018. 
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Why protein redesign: enzymes in washing powder

• Enzymes added to washing powder:

• Proteases – break down protein 
chains from stains;

• Lipases – break down fats and 
oils in stains;

• Amylases – break down starch;

• Cellullases – break down 
cellulose;

• Mannanases – break down 
mannans.

• Enzymes work at normal temperatures

• We need to increase their thermostability to allow for washing at higher 
temperatures

https://www.persil.com/uk/laundry/detergent/capsules.html
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Change of protein stability on mutation

ΔG = Gfolded – Gunfolded

ΔΔG = ΔGmutant – ΔGwild type

PHE → THR

ΔΔG = 3.5 kcal/mol
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ΔΔG prediction: simplest task of protein design

 Important for protein 
engineering
 Performance is ~ 50-60% 
(Pearson correlation)

ΔG = Gfolded – Gunfolded

ΔΔG = ΔGmutant – ΔGwild type

PHE → THR

ΔΔG = 3.5 kcal/mol
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The number of predictors is 40+

 Correlation ~ 50-60%
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Predictors overestimate ΔΔG

Dh = 1m             Dh = -1mDh = 1m             Dh = -1m

 How to measure the overestimation?

Usmanova et al., 2018, Bioinformatics
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Self-consistency test

 We do not need experimental ΔΔG data!

Usmanova et al., 2018, Bioinformatics
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Bias for FoldX

 Equals 0.72 kcal/mol per single mutation
 Structure A is not optimal for new amino acid residue

Usmanova et al., 2018, Bioinformatics
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Bias for iMutant

 Equals 0.80 kcal/mol per single mutation
 Reflects the trend of the training dataset: most mutations are 

deleterious

Usmanova et al., 2018, Bioinformatics
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How to exclude the bias? (1/2)

 Data symmetrization:

Myoglobin1 A13M 2kcal/mol
Myoglobin2 M13A -2kcal/mol

 All new predictors after 2018 are symmetrized

14



How to exclude the bias? (2/2) 

ADHase1 S123T Xkcal/mol
ADHase2 T123S -Xkcal/mol

 Predictor symmetrization during learning:

 Siamese neural network architecture 

https://builtin.com/machine-learning/siamese-network
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Experimental 
dataset is 
unbalanced 

 ThermoMutDB
11 201 single mutations
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851 552 new mutations / 376 918 single
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Statistics of single 
mutations for 
Mega-dataset
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Sequence-based
ΔΔG prediction 



Dataset and Design

symmetrization
ΔΔG(A→B) = –ΔΔG(B→A)

Protein Mutation ΔΔG

Carboxypeptidase 

A2
H44R -0.55

Polyubiquitin-C V5S 3.58

… … …

…[H]… …[R]…

…[V]… …[S]…
ΔΔG 

fully 

connected 

block

ABYSSAL

neural network

ESM-2 embeddings

for original and mutant 

amino acids.

80% of 371,597

single mutations

Protein Mutation ΔΔG

Carboxypeptidase A2 H44R -0.55

Polyubiquitin-C V5S 3.58

… … …

Carboxypeptidase A2 R44H 0.55

Polyubiquitin-C S5V -3.58

… … …

concatenation

Design of the ΔΔG predictor

Data:

Mega dataset: All possible single-point 

mutations in 396 proteins
Tsuboyama et al. (2023). Nature, 620, 434.

Protein representation:

ESM-2 embeddings
Lin et al. (2023). Science, 379, 1123.

Antisymmetry of ΔΔG prediction:

Dataset symmetrization

Siamese network
Bromley et al. (1993). International Journal of Pattern 

Recognition and Artificial Intelligence. 7, 669.

Description of the filtered Mega dataset
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ABYSSAL performance

Predictor PCC SCC

MSE, 

kcal/mol Accuracy

ABYSSAL 0.76±0.01 0.71±0.01 0.67 0.75

DeepDDG 0.70±0.01 0.58±0.01 1.01 0.72

INPS 3D 0.69±0.01 0.61±0.01 0.78 0.73

DDGun 3D 0.66±0.01 0.51±0.01 1.00 0.67

INPS 0.61±0.01 0.56±0.01 0.88 0.72

Predictor

Symmetric data
PCC

(f-r)
<δ>

PCC SCC

MSE, 

kcal/mol Accuracy

INPS-Seq 0.50±0.03 0.51±0.03 1.74 0.66 -0.99 0.00

ABYSSAL 0.49±0.03 0.48±0.03 1.74 0.63 -0.98 0.02

PremPS 0.49±0.03 0.48±0.03 1.75 0.67 -0.84 0.06

ACDC-NN3D 0.49±0.03 0.47±0.03 1.74 0.65 -0.98 -0.02

ACDC-NN 0.47±0.03 0.45±0.03 1.76 0.64 -1.00 0.00

Performance of predictors on old data: S669 dataset (420 

mutations in 86 proteins)
Pancotti et al. (2022). Briefings in Bioinformatics, 23(2).

Performance of predictors on new data: Mega Holdout 

dataset (5321 mutations in 5 proteins)
Tsuboyama et al. (2023). Nature, 620, 434.

ABYSSAL outperformed other predictors 

on unseen subset of Mega dataset.
On old data ABYSSAL is comparable with top-

performing predictors implying the ceiling of 50% 

PCC on this type of data.

21



Factors influencing performance

Influence of training set size Influence of train-test splits by 

protein sequence identity

Influence of type of training data

New data

(Mega train)

Old data 

(S2648)

New data (Mega 

Holdout)
0.84±0.01 0.75±0.01

Old data (S669) 0.49±0.03 0.50±0.03

No significant change in 

performance when trained on a 

subset of Mega dataset as low 

as 2441 mutations.

Protein sequence identity cutoff for 

train-test split does not influence 

performance. Naive random split 

approach shows the same 

performance.

ABYSSAL ranks in the top-5 on 

Mega dataset when trained on old 

data of S2648.

Dehouck, Y. et al. (2009). Bioinformatics, 25, 2537.

Data quality is the key factor influencing performance.
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Conclusion #1

- Transformer-based siamese network trained on symmetrized 
ESM-2 embeddings achieves top performance in ΔΔG prediction.

- Training set size and splitting strategy do not influence the 
performance much, while dataset quality is the key factor.

https://github.com/ivankovlab/abyssal 23



Structure-based 
ΔΔG prediction 



Protein representation learning task

Protein sequence

[Available]

Protein structure

[Available with AlphaFold]

Protein properties

Protein interactions

Protein language 

models (PLM), eg. 

ESM-2 [1]

- Graph Neural Networks [3]

- Structure-aware PLMs 

- trained from scratch (SaProt [4])

- add large number of parameters

Goals: 

● improve protein representation 

quality with the use of the novel 

structure-aware PLM;

● add protein structural 

information to a transformer 

model with a lightweight 

finetuning of existing PLMs.

Image credits: https://byjus.com/biology/proteins-structure-and-functions/

[1] Language models of protein sequences at the scale of evolution enable accurate structure prediction, Lin Z. et al., 2022

[2] Highly accurate protein structure prediction with AlphaFold, Jumper J. et al., 2021

[3] Diffdock: Diffusion steps, twists, and turns for molecular docking, Corso G. et al., 2022

[4] Saprot: Protein language modeling with structure-aware vocabulary, Su J. et al., 2023
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MULAN architecture
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MULAN — MULtimodal 

PLM for both sequence 

and ANgle-based 

structure encoding



Experimental setup

● Train on top of existing PLMs:
○ sequence-only ESM-2 8M, 35M, 650M
○ structure-aware SaProt 35M, 650M

● Only finetune base PLM together with the Structure Adapter

● Use dataset with 17M AlphaFold structures for training

● Evaluate protein embeddings on 7 downstream tasks
○ eg. protein property prediction and protein interaction prediction
○ protein embedding = average of all residue embeddings
○ train small downstream model on protein embeddings for each downstream 

task independently
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Results

MULAN generally

improves the quality of

base PLMs (and even

structure-aware PLMs) of

various sizes
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Visualization of structural awareness

T-SNE visualization of

residue embeddings of

MULAN-small and ESM-2

8M on CASP12 dataset.

We use different colors for

amino acid residue types

(left) and for the 3 states

of secondary structure

(right)

MULAN produces 

structure-aware protein 

representations
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Conclusion #2

● Proposed MULAN — MULtimodal PLM for both sequence and

ANgle-based structure encoding.

● Evaluated the obtained structure-aware protein representations on a wide range of

downstream tasks. We show that MULAN improves over any base PLM it is applied

to.

● MULAN requires finetuning of the underlying base PLM together with the Structure

Adapter → MULAN offers a cheap increase in performance.

● Demonstrated the structural awareness of MULAN embeddings.

30https://github.com/DFrolova/MULAN

https://github.com/DFrolova/MULAN
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