Sequence- and structurebased prediction of protein stability change due to single mutations

0 + 0

Protein design and redesign

Nobel prize 2024

NOBELPRISET I KEMI 2024 THE NOBEL PRIZE IN CHEMISTRY 2024

David Baker University of Washington USA

"för datorbaserad proteindesign"

"for computational protein design"

Demis Hassabis Google DeepMind United Kingdom

John M. Jumper Google DeepMind United Kingdom

"för proteinstrukturprediktion"

"for protein structure prediction"

Protein design

Daniela Röthlisberger¹*, Olga Khersonsky⁴*, Andrew M. Wollacott¹*, Lin Jiang^{1,2}, Jason DeChancie⁶, Jamie Betker³, Jasmine L. Gallaher³, Eric A. Althoff¹, Alexandre Zanghellini^{1,2}, Orly Dym⁵, Shira Albeck⁵, Kendall N. Houk⁶, Dan S. Tawfik⁴ & David Baker^{1,2,3}

Kemp elimination catalysts by computational enzyme design

doi:10.1038/nature06879

Protein redesign: phosphotriesterase

Khersonsky et al., Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. Mol. Cell, 2018.

Why protein redesign: enzymes in washing powder

- Enzymes added to washing powder:
 - Proteases break down protein chains from stains;
 - Lipases break down fats and oils in stains;
 - Amylases break down starch;
 - Cellullases break down cellulose;
 - Mannanases break down mannans.
- Enzymes work at normal temperatures
- We need to increase their thermostability to allow for washing at higher temperatures

Skoltech

Change of protein stability on mutation

Skoltech

ΔΔG prediction: simplest task of protein design

- Important for protein engineering
- Performance is ~ 50-60%

(Pearson correlation)

8

The number of predictors is 40+

• Correlation ~ 50-60%

Predictors overestimate $\Delta\Delta G$

• How to measure the overestimation?

Self-consistency test

• We do not need experimental $\Delta\Delta G$ data!

Bias for FoldX

- Equals 0.72 kcal/mol per single mutation
- Structure A is not optimal for new amino acid residue

Skoltech

Bias for iMutant

- Equals 0.80 kcal/mol per single mutation
- Reflects the trend of the training dataset: most mutations are deleterious

How to exclude the bias? (1/2)

• Data symmetrization:

Myoglobin1A13M2kcal/molMyoglobin2M13A-2kcal/mol

• All new predictors after 2018 are symmetrized

How to exclude the bias? (2/2)

• Predictor symmetrization during learning:

ADHase1	S123T	Xkcal/mol
ADHase2	T123S	-Xkcal/mol

• Siamese neural network architecture

Experimental dataset is unbalanced

• ThermoMutDB 11 201 single mutations

		~	C	U	L	Г	9	п	1	ĸ	L Mutat	ion to	IN	٢	Ŷ	N	5	I	v	vv	T	10	6
	A	0	15	26	48	28	208	19 H	26	44 K	60	20 M	16	57	14	19 P	56	47 T	94	12	20		0
	С	60	0	4	1	3	4	1	6	0	4	3	2	3	1	2	58	24	17	1	3		
	D	219	20	0	48	23	58	29	13	51	16	10	139	19	19	20	23	17	16	9	21		50
	E	220	8	46	0	38	63	21	21	107	29	20	18	20	109	24	24	24	39	12	24		
	F	158	9	8	14	0	8	10	16	7	77	8	8	3	3	3	22	7	21	48	39		
	G	180	11	32	27	19	0	9	2	7	8	4	11	14	13	30	32	9	42	6	10		100
	н	99	3	12	6	14	30	0	2	9	19	5	21	10	34	23	5	6	7	7	33		
	I	242	11	11	25	32	28	3	0	7	56	34	8	5	2	3	14	39	222	9	7		150
Σ	к	206	6	13	60	52	79	32	30	0	11	57	24	10	44	39	20	20	31	17	15		
lutatio	L	389	24	20	62	30	30	7	51	28	2	21	9	25	7	17	19	18	83	16	8		
n fror	м	76	1	4	6	13	18	3	28	12	36	0	1	3	3	5	0	9	17	4	2		200
Ē	N	119	5	67	21	11	34	16	22	18	13	12	0	5	8	14	19	14	16	7	13		
	Ρ	161	4	5	2	5	43	4	2	0	20	1	1	0	2	8	56	9	13	1	2		250
	Q	81	2	6	22	10	40	9	6	19	25	2	15	12	0	11	8	2	5	2	6		
	R	149	13	6	25	6	28	40	5	26	20	19	4	4	31	0	15	3	6	18	3		
	s	192	30	21	10	20	35	13	11	16	10	1	14	19	4	17	0	23	15	5	8		300
	т	159	32	33	47	21	48	26	73	33	31	28	27	26	22	31	95	1	101	9	24		
	v	373	24	24	58	35	62	14	106	39	83	38	12	12	5	9	39	97	0	11	13		350
	w	40	7	2	6	105	0	12	1	1	15	3	1	0	7	9	4	1	2	0	35		
	Y	119	15	9	20	153	29	23	6	7	34	4	11	10	7	6	16	7	8	30	0		

Skoltech

851 552 new mutations / 376 918 single

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.06.519132; this version posted December 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Mega-scale experimental analysis of protein folding stability in biology and protein design

Authors: Kotaro Tsuboyama^{1,2,3}, Justas Dauparas^{4,5}, Jonathan Chen^{1,2}, Niall M. Mangan^{2,7}, Sergey Ovchinnikov⁸, Gabriel J. Rocklin^{1,2} *

Statistics of single mutations for Mega-dataset

Mutation from

Mega dataset

614	579	561	591	659	577	645	643	596	653	650	592	516	612	604	605	608	633	662	0
314	290	276	287	357	275	328	347	299	346	347	293	264	301	312	302	327	333	0	352
1469	1380	1263	1303	1482	1350	1394	1526	1337	1505	1496	1334	1233	1370	1339	1391	1471	0	1466	1454
1264	1122	1217	1250	1245	1234	1244	1252	1253	1254	1257	1248	1111	1256	1251	1268	0	1253	1246	1248
893	789	887	888	887	890	894	883	889	883	885	898	853	894	884	0	893	883	887	884
1130	955	1104	1126	1136	1130	1130	1132	1133	1133	1134	1129	990	1135	0	1136	1132	1134	1136	1132
731	626	723	732	729	721	729	725	725	726	729	723	656	о	728	730	732	728	729	728
573	511	565	575	584	568	575	574	574	579	579	568	0	578	578	571	569	579	576	581
939	777	930	923	935	930	937	933	935	935	935	0	875	937	934	935	930	932	931	936
290	277	259	271	304	266	286	297	273	304	0	269	235	285	273	280	285	292	293	299
1698	1571	1512	1586	1758	1567	1650	1778	1612	0	1774	1593	1443	1637	1605	1633	1664	1747	1731	1737
2034	1739	1993	2023	2032	2018	2034	2030	0	2024	2034	2020	1809	2030	2040	2033	2023	2032	2021	2028
1144	1028	1036	1094	1174	1061	1107	0	1094	1181	1170	1073	990	1108	1103	1110	1149	1188	1160	1145
371	316	366	370	372	368	0	372	375	371	374	372	343	375	369	375	373	372	370	372
1241	1123	1206	1211	1239	0	1246	1195	1222	1232	1234	1237	1113	1226	1222	1235	1219	1197	1233	1241
592	555	495	535	0	542	601	636	545	643	644	548	481	550	542	559	577	613	653	655
2310	1998	2308	0	2311	2306	2307	2308	2305	2309	2316	2307	2145	2317	2305	2307	2314	2315	2303	2304
1153	1022	0	1155	1151	1144	1158	1152	1150	1150	1157	1158	1091	1144	1146	1157	1155	1148	1156	1153
17	0	16	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
0	1300	1362	1413	1470	1476	1430	1469	1428	1464	1473	1407	1292	1444	1425	1488	1468	1485	1461	1463
А	С	D	Е	F	G	н	I	к	L	М	N	Р	Q	R	S	т	V	W	Y

Mutation to

2000

1500

1000

500

Sequence-based ΔΔG prediction

Dataset and Design

Data:

Mega dataset: All possible single-point mutations in 396 proteins Tsuboyama et al. (2023). Nature, 620, 434.

Protein representation:

ESM-2 embeddings Lin et al. (2023). Science, 379, 1123.

Antisymmetry of $\Delta\Delta G$ prediction:

Dataset symmetrization Siamese network

Bromley et al. (1993). International Journal of Pattern Recognition and Artificial Intelligence. 7, 669.

Description of the filtered Mega dataset

ABYSSAL performance

ABYSSAL outperformed other predictors on unseen subset of Mega dataset.

On old data ABYSSAL is comparable with topperforming predictors implying the ceiling of 50% PCC on this type of data.

Predictor	PCC	SCC	MSE, kcal/mol	Accuracy
ABYSSAL	0.76±0.01	0.71±0.01	0.67	0.75
DeepDDG	0.70±0.01	0.58±0.01	1.01	0.72
INPS 3D	0.69±0.01	0.61±0.01	0.78	0.73
DDGun 3D	0.66±0.01	0.51±0.01	1.00	0.67
INPS	0.61±0.01	0.56±0.01	0.88	0.72

Predictor	PCC	SCC	MSE, kcal/mol	Accuracy	PCC (f-r)	<δ>	
INPS-Seq	0.50±0.03	0.51±0.03	1.74	0.66	-0.99	0.00	
ABYSSAL	0.49±0.03	0.48±0.03	1.74	0.63	-0.98	0.02	
PremPS	0.49±0.03	0.48±0.03	1.75	0.67	-0.84	0.06	
ACDC-NN3D	0.49±0.03	0.47±0.03	1.74	0.65	-0.98	-0.02	
ACDC-NN	0.47±0.03	0.45±0.03	1.76	0.64	-1.00	0.00	

Performance of predictors on new data: Mega Holdout dataset (5321 mutations in 5 proteins) Tsuboyama et al. (2023). Nature, 620, 434.

Performance of predictors on old data: S669 dataset (420 mutations in 86 proteins)

Pancotti et al. (2022). Briefings in Bioinformatics, 23(2).

Factors influencing performance

Data quality is the key factor influencing performance.

No significant change in performance when trained on a subset of Mega dataset as low as 2441 mutations.

Protein sequence identity cutoff for train-test split does not influence performance. Naive random split approach shows the same performance.

ABYSSAL ranks in the top-5 on Mega dataset when trained on old data of S2648.

	New data (Mega train)	Old data (S2648)
New data (Mega Holdout)	0.84±0.01	0.75±0.01
Old data (S669)	0.49±0.03	0.50±0.03

Dehouck, Y. et al. (2009). Bioinformatics, 25, 2537.

Influence of type of training data

Influence of training set size

Influence of train-test splits by protein sequence identity

S669

p53

->- Ssym

Conclusion #1

- Transformer-based siamese network trained on symmetrized ESM-2 embeddings achieves top performance in $\Delta\Delta G$ prediction.

- Training set size and splitting strategy do not influence the performance much, while dataset quality is the key factor.

https://github.com/ivankovlab/abyssal 23

Structure-based ΔΔG prediction

Protein representation learning task

[3] Diffdock: Diffusion steps, twists, and turns for molecular docking, Corso G. et al., 2022 [4] Saprot: Protein language modeling with structure-aware vocabulary, Su J. et al., 2023

Skoltech

25

MULAN architecture

Figure 2: The architecture of MULAN. a) MULAN processes sequence inputs with the ESM2 embeddings module, while structure inputs are passed to the Structure Adapter. Both sequence and structure embeddings are summed up and passed to the ESM2 model, which is then finetuned. Sequence-only ESM2 modules (blue) are initialized from the pre-trained ESM2 checkpoint. Structure processing modules are shown in pink. b) The architecture of the Structure Adapter.

Experimental setup

- Train on top of existing PLMs:
 - sequence-only ESM-2 8M, 35M, 650M
 - structure-aware SaProt 35M, 650M
- Only finetune base PLM together with the Structure Adapter
- Use dataset with 17M AlphaFold structures for training
- Evaluate protein embeddings on 7 downstream tasks
 - eg. protein property prediction and protein interaction prediction
 - protein embedding = average of all residue embeddings
 - train small downstream model on protein embeddings for each downstream task independently

Results

Table 6: The improvement shown by adding MULAN to various PLMs and SPLMs on all downstream tasks. The best results for each base model are shown in bold

	Thermo-	Fluore-	Metal Ion	Human		GO		MULAN generally
Model name	stability	scence	Binding	PPI	CC	MF	BP	improves the quality of
	SCC ↑	SCC \uparrow	AUC ↑	AUC ↑	$\mathrm{F}_{\mathrm{max}}\uparrow$	$\mathrm{F}_{\mathrm{max}}$ \uparrow	$F_{max} \uparrow$	base PLMs (and even
Small models ESM-2 8M ∆ MULAN-small 8M	.666 .006	.579 .017	.731 .047	.698 .055	.490 .002	.529 .058	.400 .026	structure-aware PLMs) of various sizes
$\begin{array}{c} \textbf{Medium models} \\ \text{ESM-2 35M} \\ \Delta \text{ MULAN-ESM2 35M} \end{array}$.689 .012	.592 .017	.793 .001	.751 .031	.489 .027	.621 .015	.443 .004	
Saprot AF 35M ∆ MULAN-SaProt 35M	.699 .005	.639 .003	.783 .017	.731 .048	.501 .004	.632 001	.440 .002	
Large models ESM-2 650M Δ MULAN-ESM 650M	.694 .009	.601 .007	.781 .013	.754 .117	.523 004	.678 001	.479 004	
SaProt AF 650M ∆ MULAN-SaProt 650M	.711 008	.668 .001	.776 .026	.720 .048	.540 .005	.658 .005	.464 .006	

Visualization of structural awareness

MULAN produces structure-aware protein representations

T-SNE visualization of residue embeddings of MULAN-small and ESM-2 8M on CASP12 dataset.

We use different colors for amino acid residue types (left) and for the 3 states of secondary structure (right)

Conclusion #2

- Proposed MULAN MULtimodal PLM for both sequence and ANgle-based structure encoding.
- Evaluated the obtained structure-aware protein representations on a wide range of downstream tasks. We show that MULAN improves over any base PLM it is applied to.
- MULAN requires finetuning of the underlying base PLM together with the Structure Adapter → MULAN offers a cheap increase in performance.
- Demonstrated the **structural awareness of MULAN** embeddings.

Acknowledgements

Marina Pak

Nikita Dovidchenko

Satyarth Mishra Sharma

Darya Frolova

Ilya Sharov

Anna Litvin

Ivan Oseledets

thx.

Skoltech

