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The Erdős–Ko–Rado Theorem

Erdős–Ko–Rado, 1961

Let [n] = {1; 2; : : : ; n}. Assume that F ⊂
(

[n]r )

with r 6 n=2 is such a collection

of r-subsets that any two of them intersect. Then |F| 6
(n−1r−1

)
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The Erdős–Ko–Rado Theorem
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Erdős–Ko–Rado, 1961

Let [n] = {1; 2; : : : ; n}. Assume that F ⊂
(

[n]r )

with r 6 n=2 is such a collection

of r-subsets that any two of them intersect. Then |F| 6
(n−1r−1

)

.

Of course the bound
(n−1r−1

)

is attained on a “star”.

Hilton–Milner, 1967

Let [n] = {1; 2; : : : ; n}. Assume that F ⊂
(

[n]r )

with r 6 n=2 is such a collection
of r-subsets that any two of them intersect and F is not a star. Then
|F| 6

(n−1r−1

)

−
(n−r−1r−1

)

+ 1.

It’s a famous stability result.

A. Raigorodskii (MIPT, MSU) 2017 Moscow 2 / 11
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of r-subsets that any two of them intersect and F is not a star. Then
|F| 6
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)
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)
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It’s a famous stability result.

Other stability results were proposed by Balogh, Bohman, Mubayi et al. using the
notion of a random hypergraph.
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(
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,E = {(A;B) : A ∩B = ∅}:
Erdős–Ko–Rado

If r 6 n=2, then �(KGn;r) =
(n−1r−1

)

.

The chromatic number �(G) of a graph is the smallest number of colors needed
to color all the vertices so that no two vertices of the same color are joined by an
edge.

Lovász, 1978

If r 6 n=2, then �(KGn;r) = n− 2r + 2.
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Successively improved by Das and Tran.
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Very simply the chromatic number of KGn;r is not so stable as the independence
number: w.h.p. even�(KGn;r;1=2) < n− 2r + 2 = �(KGn;r):
However

Kupavskii, 2016

For many different n; r; p, w.h.p.�(KGn;r;p) ∼ �(KGn;r) = n− 2r + 2:
For example, if g(n) is any growing function and r is arbitrary in the range
between 2 and n

2 − g(n), then for any fixed p,�(KGn;r;p) ∼ �(KGn;r):
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For any fixed r; s such that r > 2s+ 1,�(G(n; r; s)) =
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Pyaderkin, A.M., 2016

Let r; s be fixed and " > 0. There exists a Æ = Æ(r; s; ") such that w.h.p.�(G1=2(n; r; s)) 6 (1 + ")�(G(n; r; s)) + Æ(ns) log2 n:
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At the same time,

(ns) = Θ(ns). Thus, w.h.p. we have�(G1=2(n; r; s)) = O(ns log2 n).

One can easily show using the first moment method that w.h.p.�(G1=2(n; r; s)) = Ω(ns log2 n), which means that w.h.p.�(G1=2(n; r; s)) = Θ(ns log2 n); r 6 2s+ 1:
By the way, this agrees perfectly with the results concerning G(n; p) = Gp(n; 1; 0).
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):
But this time

(ns) = o(

(n−s−1r−s−1

)

)

, so that we get w.h.p.�(G1=2(n; r; s)) 6 (1 + o(1))

(n− s− 1r − s− 1

);
which means that w.h.p.�(G1=2(n; r; s)) ∼ �(G(n; r; s)):
Asymptotic stability!

Local conclusion

If r 6 2s+ 1, then the independence number of the random graph G1=2(n; r; s)
behaves like the independence number of the Erdős–Rényi random graph: w.h.p.
it increases log times when compared to the initial idependence number.
Otherwise, it is stable like its analog for Kneser’s graph.
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For s = 0, we had Hilton–Milner theorem that roughly told us: “If an independent

set is not a star, then it is many times smaller than the stars of maximal sizes.”

Now, we don’t have such results. Moreover, they are not true! Let’s takeG(n; 4; 1). The Frankl and Wilson linear algebra method gives the bound�(G(n; 4; 1)) 6

(n
2

)

∼
n2

2
:

On the other hand, there are two completely different constructions of
independent sets with cardinality of order n2.
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Construction 1 is just a kind of a star: fix 2 elements of [n] and take all the

4-tuples that contain them. Here we have ∼ n2

2 sets.

Construction 2 is as follows. Divide [n] into consecutive
[n

2

]

pairs of elements.

Then take all the 4-tuples formed by any two such pairs. This way we get ∼ n2

8
sets.

And one can combine the two constructions!

Nevertheless

Pyaderkin, A.M., 2016

Let r > 3 be fixed. Then w.h.p.�(G1=2(n; r; 1)) = �(G(n; r; 1)):
It is very important two emphasize here that the exact value of �(G(n; r; 1)) is
unknown for all values of r!
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One more graph

Theorem (Nagy, 1972).

If n ≡ 0 (mod 4), then �(G(n; 3; 1)) = n. If n ≡ 1 (mod 4), then�(G(n; 3; 1)) = n− 1. If n ≡ 2; 3 (mod 4), then �(G(n; 3; 1)) = n− 2.
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Theorem (Nagy, 1972).

If n ≡ 0 (mod 4), then �(G(n; 3; 1)) = n. If n ≡ 1 (mod 4), then�(G(n; 3; 1)) = n− 1. If n ≡ 2; 3 (mod 4), then �(G(n; 3; 1)) = n− 2.

Theorem (Balogh, Kostochka, A.M., 2012).

If n = 2k, then �(G(n; 3; 1)) = (n− 1)(n− 2)=6.
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If n ≡ 0 (mod 4), then �(G(n; 3; 1)) = n. If n ≡ 1 (mod 4), then�(G(n; 3; 1)) = n− 1. If n ≡ 2; 3 (mod 4), then �(G(n; 3; 1)) = n− 2.

Theorem (Balogh, Kostochka, A.M., 2012).

If n = 2k, then �(G(n; 3; 1)) = (n− 1)(n− 2)=6.

Theorem (Pyaderkin, A.M., 2016).

W.h.p. �(G1=2(n; 3; 1)) ∼ 2n log2 n:
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