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Preliminaries



Some Facts and Issues
• PID controllers overwhelmingly dominate engineering applications [in
regulation tasks].
• Tuning of gains a difficult task for wide ranging operating systems,
where the validity of a linearized approximation is limited.
• Gain scheduling, auto tuning and adaptation help but are time
consuming and fragile.
• PID’s are passive, hence if the plant is passive, closed–loop is L2-stable
for all gains ⇒ tuning is trivialised.
• Under additional assumptions y(t)→ 0.
• Key issues:

I How to identify passive outputs?

I What if the output reference value is non-zero?

I Can we go beyond L2-stability and y(t)→ 0?

I Lyapunov stability [of equilibria]?



Standard PID-PBC



Passive Systems: Hill-Moylan’s Theorem
The system

Σ(u,yHM)

{
ẋ = f (x) + g(x)u
yHM = h(x) + j(x)u

with x ∈ Rn, u, yHM ∈ Rm is cyclo-passive with storage function H(x) if
and only if, for some q ∈ N, there exist mappings `(x) ∈ Rq and
w(x) ∈ Rq×m such that

∇>H(x)f (x) = −|`(x)|2

h(x) = gT (x)∇H(x) + 2w>(x)`(x)

w>(x)w(x) = 1
2 (j
>(x) + j(x))

with ∇(·) := ( ∂
∂x (·))

>. In that case

Ḣ = y>HMu − |`(x) + w(x)u|2.

Remark In the sequel assume H(x) ≥ c ⇒ passivity.



Basic PI PBC for Output Regulation [to Zero]

Consider system Σ(u,yHM) in closed-loop with the PI PBC

ẋc = yHM

u = −KPyHM − KIxc + v , KP ,KI > 0.

Assume
det[Im + KP j(x)] 6= 0 ⇒ Well-posedness.

• The operator v 7→ y is L2-stable. More precisely, ∃β ∈ R such that∫ t

0
|yHM(s)|2ds ≤ 1

λmin(KP)

∫ t

0
|v(s)|2ds + β, ∀t ≥ 0.

• If v = 0 and H(x) is proper then yHM(t)→ 0.



Basic PID PBC [for Relative Degree One Systems]

Consider system Σ(u,yHM) and j(x) = 0, with the PID PBC

ẋc = yHM

u = −KPyHM − KIxc − KD
dyHM

dt + v .

with KP ,KI ,KD > 0 and

det[Im + KD∇>h(x)g(x)] 6= 0 ⇒ Well-posedness.

• The operator v 7→ y is L2-stable. More precisely, ∃β ∈ R such that∫ t

0
|yHM(s)|2ds ≤ 1

λmin(KP)

∫ t

0
|v(s)|2ds + β, ∀t ≥ 0.

• If v = 0 and H(x) is proper then yHM(t)→ 0.



Port–Hamiltonian (pH) Systems



Model and Properties
• PH model of a physical system [with natural output]

Σ(u,y) :

{
ẋ = [J (x) −R(x)]∇H + g(x)u
y = g>(x)∇H

I u>y is power (voltage–current, speed–force, angle–torque, etc.)

I J = −J> is the interconnection matrix, specifies the internal
power–conserving structure

I R = R> ≥ 0 damping matrix (friction, resistors, etc.)

• PH systems are cyclo–passive Ḣ = −∇H>R∇H + u>y .
• Invariance of pH structure Power preserving interconnection of pH
systems is pH.
• Nice geometric structure formalized with notion of Dirac structures.
• Most nonlinear cyclo–passive systems can be written as pH systems.
Actually, in (network) modeling is the other way around!



Examples: Nonlinear RLC Circuits
• For any (possibly nonlinear) LC circuit we have

ẋ =

[
0 Γ

−Γ> 0

]
∇H + gu, y = g>∇H

where x = col(qC , φL), H = HE (qC ) + HM(φL) – electric plus magnetic
energies, Γ comes from Kirchhoff’s laws and u are (external) voltage and
current sources.
• Example: LTI Series RLC circuit

I Total energy,
H(x) = 1

2C x2
1 +

1
2Lx2

2

I Co–energy variables ∇H = col(vC , iL),
I PH model, u voltage source

ẋ =

[
0 1
−1 −R

]
︸ ︷︷ ︸

J−R

[
x1
C
x2
L

]
︸ ︷︷ ︸
∇H

+

[
0
1

]
︸ ︷︷ ︸

g

u, , y = ∇x2H =
x2
L = iL



Mechanical Systems

• State x = col(q, p), p := M(q)q̇ momenta.
• Total energy:

H(q, p) = 1
2p>M−1(q)p + U(q)

• Assuming linear friction,

F = Rq̇, R = R> ≥ 0

• PH model, u forces/torques

ẋ =

[
0 I
−I −R

]
∇H +

[
0

G(q)

]
u

y = ∇pH = M−1p (= q̇ )

G input matrix (actuated coordinates).



Electromechanical Systems
• Assuming linear magnetics, i.e., φ = L(θ)i ∈ Rn, L(θ) = L>(θ) ≥ 0,
one mechanical d.o.f., θ ∈ R, voltages u ∈ Rm.
• State x = col(φ, θ, p), p = mθ̇.
• Total energy:

H(x) = 1
2φ
>L−1(θ)φ+

1
2mp2 + U(θ)

• Co–energy variables ∇H = col(i ,−τ, θ̇), where τ force (torque) of
electrical origin.
• PH model

ẋ =

 −R 0 0
0 0 1
0 −1 0

∇H +

 M 0
0 0
0 1

[ u
−τL

]
y = col(Mi ,ω),

τL ∈ R load torque, M ∈ Rn×m defines actuated coordinates.



Power Converters

• More general class of PH models:

ẋ = [J (x , u) −R(x)]∇H + g(x , u)

• The control u modifies the interconnection and input matrices
• Assuming: fast switching, u is the duty cycle.
• State x = col(φL, qC )

• For linear Li ,Ci the total energy is

H(x) = 1
2x>1 L−1x1 +

1
2x>2 C−1x2,

where L = diag{Li },C = diag{Ci }.



Passive Outputs for Port-Hamiltonian Systems

• Hard to identify yHM for general (f , g , h, j) systems.
• Clearer picture for pH systems

Σ(u,y)

{
ẋ = F (x)∇H(x) + g(x)u
y = g>(x)∇H(x),

with
F (x) := J (x) −R(x) ⇒ F (x) + F>(x) ≤ 0,

• All pH systems are passive but converse not true.
• Key questions

I Can we generate other passive outputs?

I With other storage functions?



Power Shaping Passive Output
• Assume F (x) is full rank. The pH system

Σ(u,yPS)

{
ẋ = F (x)∇H(x) + g(x)u
yPS = −g>(x)F−>(x)[F (x)∇H(x) + g(x)u],

satisfies
Ḣ ≤ u>yPS ⇒ u 7→ yPS is passive.

• Proof: ẋ>F−1(x)ẋ︸ ︷︷ ︸
≤0

= ẋ>∇H(x)︸ ︷︷ ︸
Ḣ

+ ẋ>F−1(x)g(x)︸ ︷︷ ︸
−yPS

u.

• Full rank condition can be relaxed using pseudo-inverses.
• Can be extended to

yEPS = −g>(x)F−>
d (x)[F (x)∇H(x) + g(x)u],

for all Fd(x) verifying Fd(x) + F>d (x) ≤ 0 and

∇
(
F−1

d F∇H
)
=
[
∇
(
F−1

d F∇H
)]>

.



Physical Interpretation of yPS

Nonlinear RL circuit with x the induc-
tor flux

p

m

x

m

p

u

H

R

H(x) magnetic energy stored in the
inductor. A pH model is

Σ(u,y) :

{
ẋ = −RH ′(x) + u
y = H ′(x).

Thus, Ḣ ≤ uy with y port current.

Applying Thevenin–Norton trans-
formation

R

yps uR

m

x

p

H

yields the new pH model

Σ(u,yPS) :

{
ẋ = −RH ′(x) + u

yPS = −H ′(x) + 1
R u.

Hence, Ḣ ≤ uyPS with yPS current
in resistor.



Interpretation in Electro–Mechanical Systems

• The new passive output is a corollary of Thevenin-Norton equivalence.
• x = col(λ, θ, p) ∈ Rne+2, λ ∈ Rne magnetic fluxes, θ, p ∈ R
mechanical displacement and momenta, u external voltages.
• Electrical equations of this system are of the form

λ̇ = −Re i + Bu,

Re = R>e > 0 ∈ Rne×ne resistors, i ∈ Rne currents on the inductors,
λ = L(θ)i , with L(θ) = L>(θ) > 0 the inductance matrix.
• The natural power port variables u and y = B>L−1(θ)λ currents in
inductors. Now,

u>yPS = u>B>R−1
e λ̇,

where R−1
e Bu are the current sources obtained from the Norton

equivalent of the Thevenin representation, with λ̇ the associated inductor
voltages.



Thevenin-Norton Equivalence
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Passive Output of Venkatraman and van der Schaft
The pH system

Σ(u,yVV)

{
ẋ = F (x)∇H(x) + g(x)u
yVV = [g(x) + 2T (x)]>∇H(x) + [D(x) + S(x)]u,

where S(x) ∈ Rm×m, D(x) ∈ Rm×m, with

S(x) = S>(x), D(x) = −D>(x)

and T (x) ∈ Rn×m verifies

Ḣ = −
[
∇>H(x) u>

] [ R(x) T (x)
T>(x) S(x)

]
︸ ︷︷ ︸

Z(x)

[
∇H(x)

u

]
+ u>yVV.

Hence
Z(x) ≥ 0 ⇒ u 7→ yVV is passive.



A Parameterisation of ALL Passive Outputs
• Introduce the factorisation (always exists)

R(x) = φ>(x)φ(x),

where φ(x) ∈ Rq×n, with q ≥ rank {R(x)} and define

ywD := h(x) + j(x)u.

• The following statements are equivalent.

(S1) The mapping u 7→ ywD is passive with storage function H(x).

(S2) For any factorization of the dissipation matrix R(x) the mappings
h(x) and j(x) can be expressed as

h(x) = [g(x) + 2φ>(x)w(x)]>∇H(x)
j(x) = w>(x)w(x) + D(x),

for some mappings w : Rn → Rq×m and D : Rn → Rm×m, with
D(x) skew–symmetric.



PID-PBC Using the Incremental Model



What if the reference value is non-zero?
• Shift the output, ỹ := y − y∗ and redefine the PI

ẋc = ỹ , u = −KP ỹ − KIxc + v .

• Is the map u 7→ ỹ passive? Not, in general (in LTI yes)!
• y∗ should be associated to a steady-state operation, i.e., and
equilibrium x∗ ∈ Rn

• More precisely, for some u∗ ∈ Rm, we have

0 = f (x∗) + g(x∗)u∗
y∗ = h(x∗) + j(x∗)u∗,

• This is true if and only if

x∗ ∈ E := {x ∈ Rn | g⊥(x)f (x) = 0}
u∗ = −g†(x∗)f (x∗).

g⊥(x) a full-rank left-annihilator and g†(x) a pseudo-inverse.



Equilibrium Assignment

The system
ẋ = f (x) + g(x)u
y = h(x) + j(x)u

in closed-loop with

ẋc = ỹ
u = −KP ỹ − KIxc

with x∗ ∈ E , has an equilibrium at

(x , xc) = (x∗,−K−1
I u∗).



Passivity of the Incremental pH Model

Consider the pH system

ẋ = F∇H(x) + gu, y = h(x) + ju

• F , g and j constant.
• u 7→ y passive.
• H(x) convex.
The incremental pH system

ẋ = F∇H(x) + gu∗ + gũ
ỹ = h(x) − h(x∗) + j ũ,

is passive ũ 7→ ỹ with storage function (“Bregman divergence")

H0(x) := H(x) − x>∇H(x∗).



Extensions and Lyapunov Stability

• Can be extended to general (f , g , h, j)-systems verifying

[f (x) − f (x∗)]>[∇H(x) −∇H(x∗)] ≤ 0.

• H(x) strictly convex ⇒ H0(x) has a unique global minimum in x∗
and is proper ⇒ is a candidate Lyapunov function.
• If so, the PI-PBC

ẋc = ỹ
u = −KP ỹ − KIxc (⇔ ũ = −KP ỹ − KI x̃c)

ensure GS of x∗ and GAS if ỹ is detectable.
• No need to know u∗ using

V0(x , xc) := H0(x) +
1
2‖xc − K−1

I u∗‖2
KI
⇒ V̇ ≤ −‖ỹ‖2

KP
,

with ‖x‖A := x>Ax .



Stabilization of Nonlinear RLC Circuits



System Description

• RLC circuits consisting of interconnections of (possibly nonlinear)
lumped dynamic (nL inductors, nC capacitors) and static (nR resistors,
nvS voltage sources and niS current sources) elements.
• Capacitors and inductors are defined by

iC = q̇C , vC = ∇HC (qC ), vL = φ̇L, iL = ∇HL(φL),

• Total energy
H(φL, qC ) := HL(φL) + HC (qC ).

• For simplicity all current (resp. voltage) controlled resistors are in
series with inductors (resp. in parallel with capacitors). Thus,

vRLi
= v̂RLi

(iLi ), iRCi
= îRCi

(vCi )



pH Model

• pH model[
φ̇L

q̇C

]
= J∇H(φL, qC ) −

[
v̂RL(∇HL(φL))

îRC (∇HC (qC ))

]
+ gu

J =

[
0 −Γ

Γ> 0

]
, g =

[
−BvS 0
0 BiS

]
, u =

[
vvS

iiS

]
,

and Γ ∈ RnL×nC , is determined by the circuit topology.
• Port variables

y = g>∇H(φL, qC ) =

[
−B>vS

∇HL(φL)

B>iS ∇HC (qC )

]
.



Main Result
Consider the nonlinear RLC circuit with (φ?

L, q?
C ) ∈ E and

• Inductors and capacitors are passive and their energy functions are
twice continuously differentiable and strictly convex.
• The resistors are passive and their characteristic functions are
monotone non–decreasing.
Then, the circuit in closed–loop with the PI-PBC ensures all state
trajectories are bounded and

lim
t→∞ ỹ(t) = 0.

If, in addition, ỹ is detectable

lim
t→∞

 φ̃L(t)
q̃C (t)
x̃C (t)

 = 0.



Regulation and Trajectory Tracking for Bilinear
Systems



The Class of Systems
• Model:

ẋ(t) = Ax(t) + d (t) +
m∑

i=1
ui(t)Bix(t)

where d(t) is a known signal.
• There exists P = P> > 0 such that

sym(PA) =: −Q ≤ 0
sym(PBi) = 0,

• Assignable trajectories:
ẋ?(t) = Ax?(t) + d (t) +

m∑
i=1

ui?(t)Bix?(t)

• Error system

˙̃x =(A +

m∑
i=1

uiBi)x̃ +

m∑
i=1

ũiBix?.



Passivity of the Incremental Model
Define the output y := C(x?)x where

C :=


x>? B>1

...
x>? B>m

P.

The operator ũ 7→ y defines a passive map with the storage
function

V (x̃) := 1
2 x̃>Px̃

More precisely

V̇ = −x̃>Qx̃ +
m∑

i=1
ũi x̃>PBix?︸ ︷︷ ︸

y>ũ



The PI Tracking Controller

The system in closed-loop with the PI-PBC

ẋC =− y
u =− KPy + KIxC + u?

ensures that trajectories are bounded and limt→∞ ya = 0, where

ya =

[
C
Q

]
x̃ .

Furthermore, if

rank
[
C
Q

]
= n

global tracking is achieved.



Application to Power Converters



Model and Passivity Property
• pH Model

ẋ =

(
J0 +

m∑
i=1

Jiui − R
)
∇H(x) +

(
G0 +

m∑
i=1

Giui

)
E

where x ∈ Rn, u ∈ Rm duty ratio of the switches and E ∈ Rn external
sources, with

∑m
i=1 GiuiE switching sources.

• Total energy stored in inductors and capacitors: H(x) = 1
2 x>Qx .

• Passivity of the incremental model. Define y := Cx , where

C :=


E>G>1 − (x?)>QJ1

...
E>G>m − (x?)>QJm

Q ∈ Rm×n.

The map ũ 7→ ỹ is passive with storage function V (x̃) = 1
2 x̃>Qx̃ . More

precisely,
V̇ = −x̃>QRQx̃ + ỹ>ũ



I. Three-phase Rectifier

C i0rc

Lrl

Vs
is

Model in dq frame

φ̇d = −
rL
L φd +ωφq −

µ0
C u1qC + V

φ̇q = −
rL
L φq −ωφd −

µ0
C u2qC

q̇C =
µ0
L u1φd +

µ0
L u2φq −

1
Crc

qC − I



cont’d
• pH model

x =

 φd

φq

qC

 , G0E =

 V
0
−I

 , R =

 rL 0 0
0 rL 0
0 0 1

rc

 ,

Q =


1
L 0 0
0 1

L 0
0 0 1

C

 , J0 = Lω

 0 1 0
−1 0 0
0 0 0



J1 = µ0

 0 0 −1
0 0 0
1 0 0

 , J2 = µ0

 0 0 0
0 0 −1
0 1 0

 .
• Control objective x3(t)→ x?

3 > 0 power factor ≈ 1 ⇒ x2(t)→ 0 .
• Assignable equilibria

x?
1 =

L
2rL

(
V −

√
V 2 −

4rL
C2rc

x∗23 −
4rL
C Ix?

3

)
.



cont’d
• The circuit does not have switched external sources ⇒ y? = 0.
• Passive output

y =
x?

3 µ0
LC

[ x?
1

x?
3

x3 − x1

−x2

]
.

• The detectability condition is satisfied ⇒ PI-PBC ensures GAS.
• Relation with Akagi’s PQ method. With reactive power injection, i.e.,
x∗2 6= 0 and in co-energy variables

y = k
[

v?
C id − i?d vC

v∗C iq − i∗q vC

]
, k ∈ R+.

In Akagi two nested PI’s to make AC power P := vd id equal to DC power
PDC := vC iDC. Define P∗ := vd i∗d and P∗DC := v∗C iDC. Then

P∗PDC = P∗DCP ⇔ y1 = 0
Q∗PDC = P∗DCQ ⇔ y2 = 0,

where Q := vd iq is reactive power. Thus, PI-PBC also achieves power
equalisation.



II. Quadratic Converter

L1
 L2


IL1


u
E


C1
 C2


VC1


D2
 D3


R

+


_


IL2

+


_


D1


+


_
VC2


The goal is VC2(t)→ Vd .



Port–Hamiltonian Model

ẋ = (J0 + J1u − R)∇H(x) + B,

x =
(

iL1 iL2 vC1 vC2

)
, B =

(
E
L1

0 0 0
)>

R =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

rLC2
2

 , Q =


L1 0 0 0
0 L2 0 0
0 0 C1 0
0 0 0 C2



J0 =
1

C1L2


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 J1 =


0 0 − 1

L1C1
0

0 0 0 − 1
L2C2

1
L1C1

0 0 0
0 1

L2C2
0 0

 .



Incrementally Passive Output

• The admissible equilibria can be parameterized by the reference x?
4 as

follows
x? :=

[
1

rL(u?)2
1

rLu? u? 1
]>

x?
4

where u? =
√

E
x?

4
is the corresponding constant control.

• The output

ỹ = −
√

Evdx1 − vdx2 +
v2

d
ErL

x3 +
vd
rL

√
vd
E x4,

is incrementally passive and detectable
• The equilibrium x? can be rendered GAS with the PI-PBC.
• The only parameters that are required are rL and E , and that the
tuning gains can take arbitrary positive values.
• Adaptation added to estimate rL, preserving the stability properties.



III. Interleave Boost Converter



IV. Modular Multilevel Converter

Rcharge Lcharge

vavdc

d(N) ±vadc(N)

d(2) ±vadc(2)

d(1) ±vadc(1)

h(N) ±vahc(N)

h(2) ±vahc(2)

h(1) ±vahc(1)

R,L

R,L

...
...

Phase-a
i L

a
i U

a

iva

vad(N)

vad(2)

vah(2)

vah(1)

it

vki( j)

Ck

Sub-MODULE h(k)



Lyapunov Stabilisation via PID-PBC



Energy Shaping [⇒ Constructing a Lyapunov Function]

• Define the function

U(x , xc) := H(x) + 1
2‖h(x)‖

2
KD

+
1
2‖xc‖2

KI
.

• We know that

U̇ = −‖∇H(x)‖2
R − ‖ywD‖2

KP
≤ 0,

From a La Salle-based analysis ywD(t)→ 0.
• To prove Lyapunov stability we need a Lyapunov function: finding a
function Hd : Rn → R such that

U(x , xc) ≡ Hd(x).

Since Hd(x(t)) is non-decreasing it will be a bona fide Lyapunov
function if it is positive definite.



Basic Idea

1

x (t)

x (o) x

x

2

ξ

• Express xc as function of x ⇔
find a first integral ⇔ solving a PDE.
• We look for functions γ : Rn → Rm

such that the level sets

Ωκ := {(x , xc) | xc = γ(x) + κ}

are invariant, with κ determined by
the ICs.
• That is true if and only if

ẋc = γ̇ = ∇>γ[f (x) + g(x)u]

• In that case

Hd(x) = U(x , γ(x) + κ)



Energy Shaping via Generation of First Integrals

Consider the pH system Σ(u,ywD) with ẋc = ywD. Assume there exists
mappings w(x) and D(x) such that the PDE[

[∇H(x)]>F>(x)
g>(x)

]
∇γ(x) =

[
[∇H(x)]>[g(x) + 2φ>(x)w(x)]

w>(x)w(x) − D(x)

]

admits a solution γ : Rn → Rm. Then,

xc = γ(x) + κ

for some κ ∈ R. Consequently,

U(x , xc) = Hd(x) = H(x) + 1
2‖h(x)‖

2
KD

+
1
2‖γ(x) + κ‖

2
KI
.



Proof

Established showing that the PDE is equivalent to

ywD = γ̇. (?)

Consequently, using ẋc = ywD and integrating we get

xc = γ(x) + xc(0) − γ(x(0)).

Now, (?) is equivalent to

[g(x) + 2φ>(x)w(x)]>∇H(x) + [w>(x)w(x) + D(x)]u
= [∇γ(x)]>[F (x)∇H(x) + g(x)u].

The proof is completed equating the terms dependent and independent
on u and factoring ∇γ(x).



Control by Interconnection
• Integral control can be represented as a pH system

ẋc = uc

yc = ∇Hc(xc)

with state xc ∈ Rm, port variables uc , yc ∈ Rm and Hamiltonian

Hc(xc) :=
1
2‖xc‖2

KI
.

• Add a power preserving interconnection[
u
uc

]
=

[
0m×m −Im

Im 0m×m

][
y
yc

]
.

• The closed-loop is pH with total energy function H(x) + Hc(xc).
• In CbI the energy is shaped generating quantities that are conserved by
the open loop pH system for all energy functions H(x), called Casimir
functions: C(x) ∈ Rm.



First Integrals vs Casimir Functions

• If ẋ = Ċ the function

Hd(x) := H(x) + Hc(C(x) + κ)

satisfies Ḣd ≤ 0. Given C(x), Hd(x), can be shaped selecting Hc .
• Casimirs are the solutions of the PDE[

F>(x)
g>(x)

]
∇C(x) =

[
g(x) + 2φ>(x)w(x)
w>(x)w(x) − D(x)

]
.

• Comparing with the PDE of PID-PBC no term ∇H(x). Hence, the set
of Casimirs is strictly contained in the set of solutions of our PDE.
• On the other hand, it is possible to give verifiable conditions such that
the Casimirs PDE reduces to a simple integration.
• Casimirs solely determined by F (x), hence, physically appealing and
with a nice geometric interpretation



Solving the PDE

Consider the pH system Σ(u,ywD) verifying

F>(x)[F †(x)]>(x)F (x) = F (x)
span{g(x)} ⊆ span{F (x)}.

Assume F †(x)gi(x), are gradient vector fields, that is,

∇[F †(x)gi(x)] =
(
∇[F †(x)gi(x)]

)> [⇔ ∃γi(x) | ∇γi(x) = −F †(x)gi(x)
]
.

Then,

γi(x) = −

∫1

0
x>F †(sx)gi(sx)ds,

is a solution of the Casimir’s PDE with

w(x) = φ(x)F †(x)g(x)
D(x) = −g>(x)[F †(x)]>(x)J (x)F †(x)g(x).



Input-Output Change of Coordinates
• Introduce a full rank matrix M and define

ū := M−1(x)u, ȳ := M>(x)ywD.

• Clearly, the power balance inequality is preserved

Ḣ ≤ u>y = ū>ȳ .

• Consider the power shaping output, the new output is

ȳ = −M>(x)g>(x)F−>(x)ẋ .

• There existes a mapping γ(x) such that ȳ = γ̇ iff

rank
{[
Λ(x)

... [Λi(x), Λj(x)]
]}

= n − m,

where Λ ∈ Rn×(n−m) is full rank and verifies

g>(x)F−>(x)Λ(x) = 0



Static State-Feedback Implementation

Equilibrium Assignment
Consider the pH system Σ(u,ywD) with w(x) and D(x) such that the PDE
admits a solution γ(x). Fix an equilibrium x? ∈ E and consider the
PID-PBC

u = −KPywD − KI(γ(x) − γ?) − KD
dywD

dt ,

Then, x? is an equilibrium point of the closed-loop system.



Lyapunov Stabilization

Fix x? ∈ E . Consider the pH system Σ(u,ywD) with the (static
state-feedback) PID-PBC where w(x) and D(x) such that the PDE
admits a solution γ(x). Define

Hd(x) = H(x) + 1
2‖h(x)‖

2
KD

+
1
2‖γ(x) − γ(x

?)‖2
KI
,

and assume
x? = argminHd(x).

(i) The closed–loop system has a stable equilibrium at x = x? with
Lyapunov function Hd(x).

(ii) The equilibrium is asymptotically stable if ywD is a detectable output
for the closed–loop system.

(iii) The stability properties are global if Hd(x) is radially unbounded.



Relation with Classical PBCs
• Energy–balancing PBC: Ḣa = −u>EByPS. Fix KP = 0 then, the PID-PBC
is an EB-PBC with added energy function

Ha(x) :=
1
2‖γ(x) + C‖2

KI
.

• IDA-PBC: Control u = uIDA(x) such that the closed–loop has the form

ẋ = Fd(x)∇HIDA(x).

Assignable HIDA(x) characterized by the solutions of the PDE

g⊥(x) [Fd(x)∇HIDA(x) − F (x)∇H(x)] = 0,

and the control is uniquely defined as

uIDA(x) := g†(x) [Fd(x)∇HIDA(x) − F (x)∇H(x)] .

Fix KP = 0 and select Fd(x) = F (x). Then, the energy function Hd(x)
and the control of the PID-PBC satisfy the IDA-PBC equations.



Micro Electro–mechanical Optical Switch

b k

u

R

q

q

m
+
-

• pH model

ẋ =

 0 1 0
−1 −b 0
0 0 − 1

r

∇H(x) +

00
1

 u

• Energy function of the system is

H(x) = 1
2mx2

2 +
1
2a1x2

1 +
1
4a2x4

1 +
1

2c1(x1 + c0)
x2

3 .



cont’d

• Assignable equilibria: x1 ∈ R>0,

x2? = 0

x3? = (c0 + x1?)
√

2c1x1?
(a1 + a2x2

1?
)

and the goal is to stabilize at x1? > 0.
• F is full rank and yPS = 1

r ẋ3, therefore γ(x) = 1
r x3.

• Finally

∇2Hd(x?) =

a1 + 3a2x2
1?

+ d2
1 d2 0 −d1d2

0 1
m 0

−d1d2 0 d2

+
KI
r

0 0 0
0 0 0
0 0 1


where d1, d2 > 0. Then, ∇2Hd(x?) > 0 for all KI > 0 ⇒ x? is a stable
equilibrium for the closed–loop system.
• Asymptotic stability also follows.



LTI systems: Controllability is Not Enough

• IDA-PBC for LTI systems is a universal stabiliser, in the sense that it is
applicable to all stabilisable systems.
• Stabilisability is not enough for IDA–PBC of mechanical system.
• For the PID–PBC presented here even controlability is not enough.
• For LTI system F and g are constant

H(x) = 1
2x>Qx ,

and x? = 0.
• The PID-PBC is u = Kx with

K :=
(
I − KPg>F−>g

)−1
(KPg>F−>FQ + KIg>F−>).



cont’d
• Consider the controllable LTI system

ẋ =

[
0 1
a1 1− a1

]
x +

[
0
1

]
u, a1 < 0

• Admits a pH representation ẋ = FQx + gu with g := col(0, 1),

F :=

[
−1 a1
1
2 a1 −a2

1

]
, Q := −

2
a2

1

[
a2

1 a1

a1 1− a1
2

]
,

which satisfies F + F> < 0 and the assumptions.
• The closed–loop is

ẋ =

[
0 1

a1 − a1k̃ 1− a1 − k̃

]
x

where

k̃ :=
2
a2

1

(
1+ 2KP

a2
1

)−1
(KI + KP).

It is unstable for all values of KP and KI .



CbI vs PID-PBC and use of General Output
• Consider a pH system with H(x) = 1

2 (x1 + x2)
2 + 1

2 x2
3 and

J =

 0 1 0
−1 0 0
0 0 0

 ,R =

0 0 0
0 0 0
0 0 1

 , g(x) =
x1

0
1

 .
• The control objective is to stabilize x? = (0, 0, x?

3 ), with x?
3 < 0.

(i) The system is not stabilisable via CbI.

(ii) Nor with PID-PBC with the power shaping output.

(iii) It is stabilisable with the PID-PBC using the output

y = (g + 2φ>w)>∇H + w>wu

with

w =

 x1

0
−1

 , φ =

0 0 0
0 0 0
0 0 1

 .



PID-PBC of Mechanical Systems



Model and Control Objective

• pH model [
q̇
ṗ

]
=

[
0 In
−In 0

][
∂H
∂q
∂H
∂p

]
+

[
0

G(q)

]
u

where H(q, p) = 1
2 p>M−1(q)p + V (q), rank(G) = m < n.

• EL model
M(q)q̈ + C(q, q̇)q̇ +∇V (q) = G(q)u.

• Desired Lyapunov function: Hd(q, p) = 1
2 p>M−1

d (q)p + Vd(q)

I Md(q) = M>d (q) > 0

I q? = argminVd(q).

• Objective Assign Hd(q, p) as a Lyapunov function to the closed loop
via PID-PBC for a class of mechanical systems.



Class of Systems
Partition q = col(qa, qu), with qa ∈ Rm and qu ∈ Rn−m and

M(q) =
[

maa(q) mau(q)
m>au(q) muu(q)

]

A0. The distribution spanned by the columns of G(q) is involutive.
Equivalently, there exists (state and input) change of coordinates so

that G =

[
Im
0

]
.

A1. The inertia matrix depends only on qu, i.e., M(q) = M(qu).

A2. The sub-block matrix maa of the inertia matrix is constant.

A3. The potential energy can be written as

V (q) = Va(qa) + Vu(qu).



Passive Outputs

• Define the signals

yu := −m−1
aa mau(qu)q̇u, ya := m−1

aa mau(qu)q̇u + q̇a.

• Apply the inner-loop control

u = ∇Va(qa) + v

• The maps v 7→ ya and v 7→ yu are passive with storage functions

Hu(qu, q̇u) :=
1
2 q̇>u (muu − m>aum−1

aa mau)q̇u + Vu(qu)

Ha(q, q̇) :=
1
2 q̇>

[
m>aum−1

aa mau m>au
mau maa

]
q̇.

More precisely
Ḣa = v>ya, Ḣu = v>yu.



Remarks on the Assumptions
• Assumption A1 implies that the shape coordinates coincide with
the unactuated coordinates.
• A1 and A2 ⇒ ∃T (qu) ∈ Rn×n of the form

T (qu) =

[
T1(qu) 0(n−m)×m
T2(qu) T3

]
,

with T3 ∈ Rm×m constant s.t. M−1(qu) = T (qu)T>(qu).

• This class contains many benchmark examples:
I robots with flexible links (modulo A3),
I cart–pole,
I pendubot,
I spherical pendulum on a puck,
I disk-on-disk.



Well-posedness and Energy Shaping Assumptions
A4. The rows of mau(qu) are gradient vector fields, that is,

∇(mau)
i = [∇(mau)

i ]>, ∀i ∈ m̄.

Equivalently, there exists a function VN : Rn−m → Rm such that

V̇N = −mau(qu)q̇u.

A5. There exist ke , ka, ku ∈ R,KD,KI ∈ Rm×m, KD,KI ≥ 0, s.t.
(i) The matrix K : Rn−m → Rm×m

K (qu) := ke Im + kaKDT3T>3 + kuKDT2(qu)T>2 (qu).

verifies
det[K (qu)] 6= 0.



cont’d

(ii) The matrix

Md(qu)=

[
A(qu) kakuT>2 (qu)KDT3

kakuT>3 KDT2(qu) D(qu)

]−1

with
A(qu) := k2

uT>2 (qu)KDT2(qu) + kekuIs
D(qu) := kekaIm + k2

a T>3 KDT3.

is positive definite.
(iii) The function

Vd(q) := kekuVu(qu) +
1
2 ||kaqa + (ku − ka)VN(qu)||

2
KI ,

has an isolated minimum in q∗.



Main Result

Fix q? ∈ Rn s.t. ∇Vu(q?
u) = 0. The system in closed-loop with

u = ∇Va(qa) + v

and the PID-PBC

kev = − [KPyd + KI(γ(q) − γ(q?)0+ KD ẏd ]

with
yd := kaya + kuyu.

has a globally stable equilibrium at (q, q̇) = (q?, 0) with Lyapunov
function

Hd(q, q̇) =
1
2 q̇>Md(q)q̇ + Vd(q).



Proof
• Note that

yd := kaya + kuyu.

• Consequently v 7→ yd is passive with storage function

kaHa(qu, q̇) + kuHu(qu, q̇u).

• Consequently the function

U(q, q̇, xc) := ke [kaHa(qu, q̇) + kuHu(qu, q̇u)] +
1
2‖xc‖2

KI
+

1
2‖yd‖2

KD
,

verifies U̇ ≤ −‖yd‖2
KP
.

• The proof is completed proving that Assumption A4 ensures

xc(t) =
∫ t

0
yd(s)ds = kaqa(t)−(ka − ku)VN(qu(t)) + κ

⇒ Hd(q, q̇) ≡ U(q, q̇, xc).



Tracking Constant Speed Trajectories

Result can be extended verbatim to track ramps in the actuated
coordinate.
Example: Tracking for inverted pendulum on a cart
• 2–DOF example G = col(0, 1), qu is the angle of the pendulum and qa

the position of the cart.
• The model parameters

M(qu) =

[
1 b cos(qu)

b cos(qu) m3

]
, V (qu) = a cos(qu).

Assumptions A1–A4 are satisfied.
• Objective to stabilize the up-right vertical position of the pendulum
and impose a ramp trajectory to the cart q∗u = 0, q∗a (t) = rt, r ∈ R.



Verifying Energy Shaping Assumption A5
• PID-PBC with ka = 1

M−1
d (qu) =

 k2
u KD

b2 cos2(qu)
m3δ(qu)

+ keku −kuKDb cos(qu)

m3
√
δ(qu)

−kuKDb cos(qu)

m3
√
δ(qu)

ke +
KD
m3


with δ(qu) := m3 − b2 cos2(qu) > 0 and

Vd(q) = akeku cos(qu) +
KI
2

qa +
(1− ku)

m3
b sin(qu)︸ ︷︷ ︸

VN(qu)


2

.

• 0 = argminVd(q) ⇔ keku < 0.
• No gains s.t. Md(qu) > 0 for |qu | ≥ π

2 ⇒ stability only local
• Given any ε > 0, there exists gains s.t.

Md(qu) > 0, K (qu) 6= 0, ∀qu ∈
[π
2 − ε,

π

2 + ε
]
.

Implies the domain of attraction is the whole (open) half plane.



Avoiding Cancellation of Va(qa): Example
Potential energy V (q) = mg` cos(qu) − (Mc + m)g sin(ψ)qa.
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