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Preliminaries



Some Facts and Issues
e PID controllers overwhelmingly dominate engineering applications [in
regulation tasks].
e Tuning of gains a difficult task for wide ranging operating systems,
where the validity of a linearized approximation is limited.
e Gain scheduling, auto tuning and adaptation help but are time
consuming and fragile.
e PID’s are passive, hence if the plant is passive, closed—loop is L-stable
for all gains = tuning is trivialised.
e Under additional assumptions y(t) — O.

e Key issues:

» How to identify passive outputs?

v

What if the output reference value is non-zero?

» Can we go beyond L,-stability and y(t) — 07

v

Lyapunov stability [of equilibria]?



Standard PID-PBC



Passive Systems: Hill-Moylan's Theorem

The system

5 X:f(X)+g(X)u
(uyyam) Yan = h(X) +_](X)u

with x € R”, u, yuy € R™ is cyclo-passive with storage function H(x) if
and only if, for some g € N, there exist mappings £(x) € R? and
w(x) € R9*™ such that

Hx)f(x) = —lt(x)P
( ) =g (x)VH(x) + 2w (x)(x)
) =

w' (x)w(x (J (x) +j(x))
with V(-) == (2 (-))T. In that case
H= Vit — [€(x) + w(x)ul?.

Remark In the sequel assume H(x) > ¢ = passivity.



Basic Pl PBC for Output Regulation [to Zero]

Consider system X, ..y in closed-loop with the PI PBC

Xe = Y
u = —Kpyuw— Kixc+v, Kp,K >0.
Assume
det(l,, + Kpj(x)] 20 = Well-posedness.
e The operator v — y is Ly-stable. More precisely, 33 € R such that
t 1 t
|, (a1 e < 5 | v(s)Pas 4, vie > 0

e If v =0 and H(x) is proper then yu(t) — O.



Basic PID PBC [for Relative Degree One Systems]

Consider system L, .y and j(x) = 0, with the PID PBC

Xc = Y

d
u = —Kpym— Kixc — KD% +v.

with Kp, Kj, Kp > 0 and
det[l,, + KpV " h(x)g(x)] #0 = Well-posedness.

e The operator v — y is Lo-stable. More precisely, 33 € R such that

t 1 t
52ds<7J v(s)ds + B, ¥t > 0.
|| bnts)fds < 5 | isIPds+, ve >

e If v =0 and H(x) is proper then yu(t) — 0.



Port-Hamiltonian (pH) Systems



Model and Properties

e PH model of a physical system [with natural output]

5 ) x = [Jx)—R((x)IVH+ g(x)u
) y = g'(x)VH

» u'y is power (voltage—current, speed—force, angle-torque, etc.)

> J =—J" is the interconnection matrix, specifies the internal

power—conserving structure
» R=R" >0 damping matrix (friction, resistors, etc.)

e PH systems are cyclo—passive H = —VHTRVH + u'y.

e Invariance of pH structure Power preserving interconnection of pH
systems is pH.

e Nice geometric structure formalized with notion of Dirac structures.
e Most nonlinear cyclo—passive systems can be written as pH systems.
Actually, in (network) modeling is the other way around!



Examples: Nonlinear RLC Circuits

e For any (possibly nonlinear) LC circuit we have

).(_or
B I L)

where x = col(qc, &), H = He(qc) + Hu(d) — electric plus magnetic
energies, I' comes from Kirchhoff's laws and u are (external) voltage and

VH+gu, y=g' VH

current sources.

e Example: LTI Series RLC circuit

> Total energy,
_ ixz + ixz
T2cTt T oL?

» Co—energy variables VH = col(vc, i),

H(x)

» PH model, u voltage source

0o 1 Y
1 —R || 2
\q/_/

\ﬁ/—/ \W—/
J—R VH g

X2 .
Uy, y:vx2H: =

+ T—IL




Mechanical Systems

e State x = col(q, p), p:= M(q)§ momenta.

Total energy:

H(q,p) = %pTM*l(q)er U(q)

Assuming linear friction,

F=R4, R=R"2>0

PH model, u forces/torques

0 / 0
¢ = VH +
) ~I —R G(qu”
y = VyH=M"p (=)

G input matrix (actuated coordinates).



Electromechanical Systems

e Assuming linear magnetics, i.e., ¢ = L(0)i € R", L(0) = LT(08) >0,
one mechanical d.o.f., 8 € R, voltages v € R™.

e State x = col(,0,p), p = mo.

e Total energy:

Hx) = 507 L0)0 + 5 p? + U(0)

o Co—energy variables VH = col(i, —1,0), where T force (torque) of
electrical origin.

e PH model
—-R 0 O M 0
u
X = 0 0 1 |VH+ 0 O l ‘|
—TL
0 -1 0 0 1
y = col(Mi,w),

T, € R load torque, M € R"*™ defines actuated coordinates.



Power Converters

e More general class of PH models:
x =[J(x,u) — R(xX)IVH + g(x, u)

e The control u modifies the interconnection and input matrices

e Assuming: fast switching, u is the duty cycle.

State x = col(dy, gc)
For linear L;, C; the total energy is

1 1
H(x) = ExlTL’lxl + §X2T C1x,

where L = diag{L;}, C = diag{C;}.



Passive Outputs for Port-Hamiltonian Systems

e Hard to identify yuy for general (f, g, h,j) systems.
e Clearer picture for pH systems

: x = F(x)VH(x)+ g(x)u
(u,y) y = g'(x)VH(x),

with
F(x)=J(x)—R(x) = F(x)+FT(x) <0,

e All pH systems are passive but converse not true.

o Key questions
» Can we generate other passive outputs?

» With other storage functions?



Power Shaping Passive Output
e Assume F(x) is full rank. The pH system

. x = F(x)VH(x)+g(x)u
(yes) ) e = g T()F T(X)[F(x)VH(x) + g(x)ul,

satisfies
H < uT)/Ps = U+ Ypg IS passive.
e Proof: x'Fl(x)x=x"VH(x)+x Fl(x)g(x)u.
~—_———— —

<0 H —Yes
e Full rank condition can be relaxed using pseudo-inverses.

e Can be extended to

yeps = —8 ' (X)Fy " (X)[F(x)VH(x) + g(x)ul,
for all Fy(x) verifying Fy(x) + F (x) < 0 and

V (F;YFVH) = [V (F,1FVH)] .



Physical Interpretation of ypg

Nonlinear RL circuit with x the induc-
tor flux

H(x) magnetic energy stored in the

inductor. A pH model is
x = —RH'(x)+u
Liuy) o
y = H'(x).

Thus, H < uy with y port current.

Applying Thevenin—Norton trans-
formation

R
¥ps

yields the new pH model

).( =
Z(L’)YPS) :{ Vos =

Hence, H < Uyps

—RH'(x) +u
—H’(x) + £u.

with yps current
in resistor.



Interpretation in Electro—Mechanical Systems

e The new passive output is a corollary of Thevenin-Norton equivalence.
e x =col(A,0,p) € R™*2 A € R™ magnetic fluxes, 8,p € R
mechanical displacement and momenta, u external voltages.

e Electrical equations of this system are of the form

A= —R.i+ Bu,

R. = ReT > 0 € R"™*" resistors, i € R currents on the inductors,
A= L(0)i, with L(8) = LT(8) > 0 the inductance matrix.
e The natural power port variables u and y = BT L=1(0)A currents in
inductors. Now,

u'yps =u' BT R;l?.\,

where R.1Bu are the current sources obtained from the Norton
equivalent of the Thevenin representation, with A the associated inductor
voltages.



Thevenin-Norton Equivalence

Electro-
mechanical
System

Electro-
mechanical
System




Passive Output of Venkatraman and van der Schaft
The pH system

. x = F(X)VH(X)+gx)u
(usyw) [y — [g(X)+2T(X)]TVH(X)+[D(X)+5(X)]U)

where S(x) € R™™ D(x) € R™*™ with
S(x)=5"(x), D(x) =—D"(x)

and T(x) € R"™™ verifies

be Lo o[ 20 7] [
Z(x)
Hence

Z(x) >0 = u+> yy is passive.



A Parameterisation of ALL Passive Outputs

e Introduce the factorisation (always exists)

where ¢(x) € R7*", with g > rank {R(x)} and define
Yup == h(x) +j(x)u.
e The following statements are equivalent.

(S1) The mapping u — y,p is passive with storage function H(x).

(S2) For any factorization of the dissipation matrix R(x) the mappings
h(x) and j(x) can be expressed as

hix) = lg(x)+2¢" (x)w(x)]" VH(x)
jx) = w(x)w(x) + D(x),

for some mappings w : R" — R9*™ and D : R" — R™*™ with
D(x) skew—symmetric.



PID-PBC Using the Incremental Model



What if the reference value is non-zero?

e Shift the output, ¥ := y — y, and redefine the PI

Xc =y, u=—Kpy — Kixc + v.
e Is the map u+— y passive? Not, in general (in LTI yes)!
e y, should be associated to a steady-state operation, i.e., and
equilibrium x, € R"”
e More precisely, for some u, € R™, we have

0= f(x) + g(x)us
Ve = h(X*) +j(X*)U*)
e This is true if and only if
x, €E:={xeR"| gt(x)f(x) =0}
Uy :_gT(X*)f(X*)-

g+ (x) a full-rank left-annihilator and g (x) a pseudo-inverse.



Equilibrium Assignment

The system

in closed-loop with

Xc =Yy

u

—Kpy — Kixc

with x, € £, has an equilibrium at

(X)Xc) = (X*>_K/ lu*)-



Passivity of the Incremental pH Model

Consider the pH system
x=FVH(x)+gu, y =h(x) +ju

e F,g and j constant.
® U — y passive.
e H(x) convex.

The incremental pH system

x = FVH(x)+ gu, + gb
y = h(x) — h(x.) + /i,

is passive I — y with storage function (“Bregman divergence")

Ho(x) := H(x) — x " VH(x,).



Extensions and Lyapunov Stability

e Can be extended to general (f, g, h, j)-systems verifying
[f(x) — F(x)]T[VH(x) — VH(x)] < 0.

e H(x) strictly convex = Hp(x) has a unique global minimum in x,
and is proper = is a candidate Lyapunov function.
e If so, the PI-PBC

Xe =Y

u = —Kpy—Kix. (& i=—-Kpy—KX)

ensure GS of x, and GAS if ¥ is detectable.

e No need to know u, using
V. = H L= K2 V< —|yl3
0(x,xc) == Ho(x) + 2||Xc Ll = V<=7l

with [|x]|a :== x T Ax.



Stabilization of Nonlinear RLC Circuits



System Description

e RLC circuits consisting of interconnections of (possibly nonlinear)
lumped dynamic (n. inductors, nc capacitors) and static (ng resistors,
voltage sources and nj, current sources) elements.

Ny

e Capacitors and inductors are defined by
ic=dc, vc=VHclgc), vi =1, iL=VH(dL),

e Total energy
H(dbw,qc) == Hi(dr) + Helge).

e For simplicity all current (resp. voltage) controlled resistors are in
series with inductors (resp. in parallel with capacitors). Thus,

VR, = VR, (i,)s ire, = IRrc, (V)



pH Model

e pH model
b1 Vr, (VHL(dL))
=JVH(d,, — | A
l e ] TVHIbLE) = 5 (THe(ac)
0 T B, 0 -
j:[rT O‘|,g:l 0 Bi5 y U=

and ' € R™*"¢_is determined by the circuit topology.
e Port variables

—BLVH(d1)

-
y =g VH(dbr,qc) =
e Bl VHc(qc)

|

+ gu



Main Result

Consider the nonlinear RLC circuit with (¢}, q¢) € £ and

e Inductors and capacitors are passive and their energy functions are
twice continuously differentiable and strictly convex.

e The resistors are passive and their characteristic functions are
monotone non—decreasing.

Then, the circuit in closed—loop with the PI-PBC ensures all state
trajectories are bounded and

lim y(t) =0.

t—o0

If, in addition, y is detectable

lim | §c(t) | =0.

t—oo



Regulation and Trajectory Tracking for Bilinear
Systems



The Class of Systems

e Model:
x(t) = Ax(t +Zu,

where d(t) is a known signal.
e There exists P = PT > 0 such that

sym(PA) = —Q <0
sym(PB;) = 0,

e Assignable trajectories
( ) AX* + Z U,* B X*

e FError system

x =(A+ i uiB)X + i i Bix,.
i=1 i=1



Passivity of the Incremental Model
Define the output y := C(x)x where
x, B

C .= P.

TRT
X Bm

The operator &1 — y defines a passive map with the storage

function
V(%)= 1o ps
2
More precisely
m
V = —%"Q%+) Uik PBix.




The Pl Tracking Controller

The system in closed-loop with the PI-PBC

Xc=—y

u=—Kpy + Kixc + us

ensures that trajectories are bounded and lim;_,, ¥, = 0, where

Furthermore, if

global tracking is achieved.



Application to Power Converters



Model and Passivity Property
e pH Model

X = (Jo + Z J,'U,' — R> VH(X) + <Go + Z G,'U,‘) E
i=1 i=1

where x € R", u € R™ duty ratio of the switches and E € R" external
sources, with Zf"zl G;ju; E switching sources.

e Total energy stored in inductors and capacitors: H(x) = 2x ' Qx.

e Passivity of the incremental model. Define y := Cx, where

ETG —(x)" QA
C = : Q € R™",
ETG,I - (X*)TQJm
The map I +— ¥ is passive with storage function V(X) = %)?T Qx. More

precisely,
V=-x"QRQx+y 0



|. Three-phase Rectifier

AMAA

Ay

=z
C jrc Ti0
Model in dqg frame
dbg = —*¢d+w¢q CU1CIc+ v
; o Ho
d)q = _T‘bq - wq)d - fu2qC

. 1
gc = %U1¢d+ g — CIC—/



cont'd

e pH model

d>d % re 0 0
X = bq , GoE = 0 , R= 0 nn O
qc —1 0 0 +

10 0 0 10

L

Q=1 o % 0 |, o=Lw| -1 0 0)

00 % 0 00

0 0 —1 0 0 O

sh=w| 00 0 |,kb=w| 00 —1

1 0 O 01 O

e Control objective x3(t) — x§ > 0 power factor =1 = x(t) —
o Assignable equilibria

L 4r/_ 4rL
* _ 2 *2
T o (V \/V T B )




cont'd

e The circuit does not have switched external sources = y* =0.
e Passive output

LC

e The detectability condition is satisfied = PI-PBC ensures GAS.
e Relation with Akagi's PQ method. With reactive power injection, i.e.,

o
_ X3lo éx3 — X1
—x

x5 # 0 and in co-energy variables
K,k
y:k[ g = ijve ] keR,.
Viiq — igve

In Akagi two nested Pl's to make AC power P := v4iy equal to DC power
Poc := vcipc. Define P* := vyij and Pg; := viipc. Then

P*PDC = P;CP @ y1:0

QP = PpQ & y2 =0,

where Q = vyiq is reactive power. Thus, PI-PBC also achieves power
equalisation.



[1. Quadratic Converter

D1
N ps
IL1 1L2
+ + +
E —|/— VCl = u VC2 =
- Cl

C2

The goal is Ve (t) — V.



Port—Hamiltonian Model

x = (Jo+ hu—R)VH(x)+ B,

.
X:( i[_1 i[_2 Vci Vco ), BZ( LL:_l 0 0 O)
000 O LL 0 0 O
000 O 0 L, 0 0
R=1o 00 o |°97 0 0 G O
1
000 & 0 0 0 G
0 0 00 0 0 —i 0
1 0 0 10 0 0 0 -
JO:CL J = 1 LG
bl 0 =1 0 0 g O 0 0
0 0 0O 0 i 0 0



Incrementally Passive Output

e The admissible equilibria can be parameterized by the reference x; as

follows
* 1 1 * T *
X = |: m Tt u 1 :| X4
where v* = XE* is the corresponding constant control.
4
e The output
. v3 va [vg
V=—VEvgx1 —vgxa + =-x3 + —1/ = Xa,
Er/_ ry E

is incrementally passive and detectable

e The equilibrium x* can be rendered GAS with the PI-PBC.

e The only parameters that are required are r; and E, and that the
tuning gains can take arbitrary positive values.

e Adaptation added to estimate r;, preserving the stability properties.



[11. Interleave Boost Converter




V. Modular Multilevel Converter

it
—_—
[
Vah(1) ) ?
Vki(j)
Vah(2) \
[

Sub-MODULE h)

iUa

R charge Lcha rge

Vdc

Va



Lyapunov Stabilisation via PID-PBC



Energy Shaping [= Constructing a Lyapunov Function]

e Define the function
Ulx,xc) = H(x *Ilh Mk, + *HXcHK,-
e We know that

=—VH)I% = llymllk, <0,

From a La Salle-based analysis y,p(t) — 0.
e To prove Lyapunov stability we need a Lyapunov function: finding a
function Hy : R™ — R such that

U(x,xc) = Hyq(x).

Since Hy(x(t)) is non-decreasing it will be a bona fide Lyapunov

function if it is positive definite.



Basic Idea

e Express x. as function of x &
find a first integral & solving a PDE.
e We look for functions y : R” — R™
such that the level sets

Q= {(X)Xc) | Xc = Y(X) + K}

are invariant, with k determined by
the ICs.
e That is true if and only if

Xe =v =V y[f(x)+g(x)ul
e In that case

Ha(x) = U(x,v(x) + x)



Energy Shaping via Generation of First Integrals

Consider the pH system X, ..y with X = y,p. Assume there exists
mappings w(x) and D(x) such that the PDE

I(VH(x)]TFT(x)
g

[VH)Tg(x) +2¢ T (x)w(x)]

V) = wT (x)w(x) — D(x)

x)

admits a solution vy : R” — R™. Then,
xe =v(x) + K
for some k € R. Consequently,

Ut ) = Halx) = H) + 5 1A ey + 3 v e) + el



Proof

Established showing that the PDE is equivalent to
Yap = Y- (%)
Consequently, using x. = y,p and integrating we get
xe =v(x) + xc(0) —v(x(0)).
Now, (%) is equivalent to

lg(x) + 20T (x)w(x)]TVH(x) + w' (x)w(x) + D(x)]u
= [Vy(x)]T[F(x)VH(x) + g(x)ul.

The proof is completed equating the terms dependent and independent
on u and factoring Vy(x).



Control by Interconnection
e Integral control can be represented as a pH system
Xe = U
Yo = VH:(x)
with state x. € R™, port variables u., y. € R™ and Hamiltonian

1
Helxe) = 5 e

e Add a power preserving interconnection

u _ 0m><m *Im y
Uc Irn Ome Ye

e The closed-loop is pH with total energy function H(x) + H(xc).

e In Cbl the energy is shaped generating quantities that are conserved by
the open loop pH system for all energy functions H(x), called Casimir
functions: C(x) € R™.



First Integrals vs Casimir Functions

e If x = C the function
Hy(x) := H(x) + H.(C(x) + k)

satisfies Hy < 0. Given C(x), Hq(x), can be shaped selecting H..
e Casimirs are the solutions of the PDE

FTix) [ g+ 267 (wlx)
[ ¢ (x) 1 Ve = [ wT (x)w(x) — Dlx)

e Comparing with the PDE of PID-PBC no term VH(x). Hence, the set
of Casimirs is strictly contained in the set of solutions of our PDE.

e On the other hand, it is possible to give verifiable conditions such that
the Casimirs PDE reduces to a simple integration.

e Casimirs solely determined by F(x), hence, physically appealing and
with a nice geometric interpretation



Solving the PDE

Consider the pH system X, .y verifying

FTx)IFT )T (x)F(x) = F(x)
span{g(x)} C span{F(x)}.

Assume FT(x)gj(x), are gradient vector fields, that is,
VIF (x)gi(x)] = (V[FT(X)g;(X)})T (& Fyi(x) | Vyi(x) = —FT(x)gi(x)] .

Then,

Yilx) = — L xTF (sx)gi(sx)ds,

is a solution of the Casimir's PDE with

w(x) = o(x)FT(x)g(x)
D(x) = —g T () [FT(x)]T ()T (x)FT(x)g (x).



Input-Output Change of Coordinates

e Introduce a full rank matrix M and define
U:=M1x)u, y:=MT(X)yip.
e Clearly, the power balance inequality is preserved
H< uly=1u"y.
e Consider the power shaping output, the new output is
y=-M"(x)g" (x)F T (x)x.
e There existes a mapping y(x) such that y =y iff
rank {[A(X) : [/\,-(x),/\,-(x)ﬂ} =n—m,
where A € R™("=m) is full rank and verifies

g (XF T(x)Ax) =0



Static State-Feedback Implementation

Equilibrium Assignment

Consider the pH system X, ..y with w(x) and D(x) such that the PDE
admits a solution y(x). Fix an equilibrium x* € £ and consider the
PID-PBC

dwa
dt’

u = —Kpyw — Ki(y(x) —v*) —Kp

Then, x* is an equilibrium point of the closed-loop system.



Lyapunov Stabilization

Fix x* € £. Consider the pH system L, ...y with the (static
state-feedback) PID-PBC where w(x) and D(x) such that the PDE

admits a solution y(x). Define

Hax) = HUx) 5 10 e + Slv0x) = v () ey

and assume
x* = arg min Hy(x).

(i) The closed—loop system has a stable equilibrium at x = x* with
Lyapunov function Hy(x).

(i) The equilibrium is asymptotically stable if y,p is a detectable output
for the closed—loop system.

(iii) The stability properties are global if Hy(x) is radially unbounded.



Relation with Classical PBCs

e Energy-balancing PBC: H, = —ugsyps. Fix Kp = 0 then, the PID-PBC
is an EB-PBC with added energy function

Halx) = 3y x) + Cl.
e IDA-PBC: Control u = urps(x) such that the closed—loop has the form
X% = Fq(x)V Hpa(x).
Assignable Hip,(x) characterized by the solutions of the PDE
g+ (x) [Fy(x)VHma(x) = F(x) VH(x)] = 0,
and the control is uniquely defined as
urpa(x) := g7 (x) [Fg(x)V Hipa(x) — F(x)VH(x)] .

Fix Kp = 0 and select F4(x) = F(x). Then, the energy function Hy(x)
and the control of the PID-PBC satisfy the IDA-PBC equations.



Micro Electro—mechanical Optical Switch

e
u%
=
e pH model
0 1 0 0
x=|-1 —b 0 | VH(x)+ |0| u
0 0 -1 1

e Energy function of the system is

1 1 1
H(x) = %xf + 531X12 + Zagxf +

1
— - x
2c1( + ) 2



cont'd

e Assignable equilibria: x; € Ry,

X2 =0

*

x3, = (co + Xl*)\/2C1X1* (a1 + axx?))

and the goal is to stabilize at x;, > 0.
e [ is full rank and ypg = %)'q, therefore y(x) = %X3.

e Finally
a + 332X12* + d12d2 0 —dids K 0 0
V2Hq(x,) = 0 1 0 [+-]0 o
—didy 0 d> 0 0

where dy, d» > 0. Then, V2Hy(x,) > 0 for all K; >0 = x, is a stable
equilibrium for the closed—loop system.
e Asymptotic stability also follows.



LTI systems: Controllability is Not Enough

e IDA-PBC for LTI systems is a universal stabiliser, in the sense that it is
applicable to all stabilisable systems.

e Stabilisability is not enough for IDA-PBC of mechanical system.

e For the PID-PBC presented here even controlability is not enough.

e For LTI system F and g are constant

H(x) = %XT Qx,

and x, = 0.
e The PID-PBC is u = Kx with

—1
K:=(—-Kpg F Tg) (Keg"FFTFQ+Kig FT).



cont'd

e Consider the controllable LTI system

. 0 1
X =
ai 1— ai
e Admits a pH representation x = FQx + gu with g := col(0,1),
F = [:1 al;| , Q= _32 |;3§ ala ] )
1
Ea]_ —d7 a] (a1 Y

which satisfies F + F T < 0 and the assumptions.
e The closed—loop is

X+ uy, a3 <0

. 0 1
X = ~ ~| X
al—alk 1—31—/(
where

) 2Kp\ 7t
k::72 (1“!‘;) (K[+KP).
a a

It is unstable for all values of Kp and K;.



Cbl vs PID-PBC and use of General Output

e Consider a pH system with H(x) = 3(x1 + x2)? + £xZ and

0 0 O X1
J=|-1 0 0|,R=1|0 0 0f,glx)=
0 0 0 01 1

e The control objective is to stabilize x* = (0,0, x5 ), with x < 0.

(i) The system is not stabilisable via Cbl.
(i) Nor with PID-PBC with the power shaping output.

(iii) It is stabilisable with the PID-PBC using the output

y=(g+2p " w) ' VH+w wu

with
X1 0 0O
w=|0]|, &=|0 0 0
-1 0 0 1



PID-PBC of Mechanical Systems



Model and Control Objective

lZ]:[_Oln QH c?q)lu

where H(q,p) = 3p"M~(q)p + V(q), rank(G) = m < n.
e EL model

e pH model

o ol
T|TR|T

M(q)g+ Clq,d)g + VV(q) = G(q)u.
e Desired Lyapunov function: Hy(q,p) = 2p" M, *(q)p + Va(q)
> My(q) = Mg (q) >0
> g, = argmin Vy(q).

e Objective Assign Hy(q, p) as a Lyapunov function to the closed loop

via PID-PBC for a class of mechanical systems.



Class of Systems

Partition ¢ = col(qa, q,), with g, € R™ and g, € R"~"™ and

AO0.

Al.
A2.
A3.

| maalq) mau(q)
M(‘”_lmju(q) Mu(3)

The distribution spanned by the columns of G(q) is involutive.
Equivalently, there exists (state and input) change of coordinates so

Im
that G = l ]
0
The inertia matrix depends only on q,, i.e., M(q) = M(q,).

The sub-block matrix m,, of the inertia matrix is constant.

The potential energy can be written as

V(Q) = Va(qa) + Vu(qu)



Passive Outputs

e Define the signals

Yu = _ma_;;lmau(qu)qu) Ya = ma_almau(qll)d“ + Ga-

e Apply the inner-loop control

u=VV,(q,) +v

e The maps v — y, and v — y, are passive with storage functions

Hu(qu, qu)

H.(q,q)

More precisely

1. _ .

EquT(muu - m;rumaalmau)qu + Vu(qu)
1.+ m;';m;almau m;'; .

=9 q.

2 may Maa

Ha = VTy.aa Hu = VT}/u-



Remarks on the Assumptions
e Assumption Al implies that the shape coordinates coincide with

the unactuated coordinates.
e Al and A2 = TT(q,) € R™" of the form

T(q,) = T1(qu) 0(n—m)><m
! TQ(qu) T3 )

with T3 € R™™ constant s.t. M~ 1(q,) = T(q,) T (qu).
e This class contains many benchmark examples:

» robots with flexible links (modulo A3),

v

cart—pole,

v

pendubot,

v

spherical pendulum on a puck,

disk-on-disk.

v



Well-posedness and Energy Shaping Assumptions

A4. The rows of m,,(q,) are gradient vector fields, that is,
V(ma)' = [V(ma)17, Vi € .
Equivalently, there exists a function Vjy : R~ — R™ such that
Vv = —mau(qu) Gu-

A5. There exist ke, ko, ky, € R, Kp, Kj € R™™  Kp, K; > 0, s.t.
(i) The matrix K : R"=m — RmMxm

K(qu) = kelm + kaKp T3 T3 + kuKp T2(qu) TS (qu)-

verifies
det[K(qy)] # 0.



cont'd

(ii) The matrix

1

My (qu)— /i(qu) kaku T3 (qu)Kp T3 |
kaky T3 Kp T2(qu) D(qu)
with
Alq) = KT, (qu)KpT2(qu) + kekuls
D(qu) = kekalm+ k2T KpTs.

is positive definite.
(iii) The function

1
Va(q) = kekuVu(qu) + S lIkada + (ku = ka) Viv(qu)lli,

has an isolated minimum in g..



Main Result

Fix g € R" s.t. VV,(q}) = 0. The system in closed-loop with
u=VVy(qs) +v
and the PID-PBC
kev = —I[Kpysd+ Ki(v(q) —v(g")0 + Kpyd]

with
Yd ‘= ka)/a + ku,Vu-

has a globally stable equilibrium at (q, g) = (g«,0) with Lyapunov

function

Halar ) = 54" Mala)d + Vala).



Proof

o Note that
Yd = KaYa + kyyu.

e Consequently v — yy is passive with storage function

kaHa(quy @) + kuHu(qu, Gu)-

e Consequently the function
. . ) 1 s 1 5
U(q, 4, xc) = kelkaHa(qu, @) + kuHu(qu, Gu)] + EHXC”K/ + §||deKD’

verifies U < —llyallx, -
e The proof is completed proving that Assumption A4 ensures

xe(t) = L Va(5)ds = koqa(£)— (ks — ko) Viv(qu(£)) +

= Hd(q) Q) = U(q) q)Xc)-



Tracking Constant Speed Trajectories

Result can be extended verbatim to track ramps in the actuated
coordinate.

Example: Tracking for inverted pendulum on a cart

e 2-DOF example G = col(0,1), g, is the angle of the pendulum and g,
the position of the cart.

e The model parameters

1 bcos(q,)
M(q.) = |, V(qu) = acos(qu).
bcos(q,) ms
Assumptions A1-A4 are satisfied.
e Objective to stabilize the up-right vertical position of the pendulum
and impose a ramp trajectory to the cart g =0, qi(t) =rt, r € R.



Verifying Energy Shaping Assumption A5
e PID-PBC with k, =1
k2Kp "mj;s W keky  —hyKpb—d
MJI(CIu) — 5(qu)

_ cos(qy) @
k"KDbma 5(qu) ke t ms

with 8(qy,) := ms — b? cos?(q,) > 0 and

K 1— k) .
g+ ( )bsm(qu)
2 M)

Vn(qu)

Va(q) = akek, cos(qy) +

e 0 =argminVy(q) & kek, <O.
e No gains s.t. My(q,) >0 for [q,] > 5 = stability only local
e Given any € > 0, there exists gains s.t.

7T 7T
Mqy(qu) >0, K(qu) #0, Vqu, € §_€)§+€} .

Implies the domain of attraction is the whole (open) half plane.



Avoiding Cancellation of V,(q,): Example
Potential energy V(q) = mglcos(q,) — (M. + m)gsin({)ga.

051 Initial Position|

1, =0

04 (0
3
ol - -0

https://youtu.be/CGInoXkROFA.©
https://youtu.be/YBcl9WIlaQa0



