PID Passivity-based Control: Application to Energy and Mechanical Systems

Romeo Ortega
Laboratoire des Signaux et Systèmes
CNRS-CentraleSupelec
Gif-sur-Yvette, France

Collaboration with: Pablo Borja, Rafael Cisneros, Alejandro Donaire,
Zhang Meng, Lupe Romero and Daniele Zonetti.

Voronovo, Russia, 15-16/06/2017

Layout

- Preliminaries
- Standard PID-PBC
- Port-Hamiltonian Models
- PID-PBC Using the Incremental Model
- Application to Power Converters
- Lyapunov Stabilisation via PID-PBC
- PID-PBC of Mechanical Systems
- Conclusions and Future Work

Preliminaries

Some Facts and Issues

- PID controllers overwhelmingly dominate engineering applications [in regulation tasks].
- Tuning of gains a difficult task for wide ranging operating systems, where the validity of a linearized approximation is limited.
- Gain scheduling, auto tuning and adaptation help but are time consuming and fragile.
- PID's are passive, hence if the plant is passive, closed-loop is \mathcal{L}_{2}-stable for all gains \Rightarrow tuning is trivialised.
- Under additional assumptions $y(t) \rightarrow 0$.
- Key issues:
- How to identify passive outputs?
- What if the output reference value is non-zero?
- Can we go beyond \mathcal{L}_{2}-stability and $y(t) \rightarrow 0$?
- Lyapunov stability [of equilibria]?

Standard PID-PBC

Passive Systems: Hill-Moylan's Theorem

The system

$$
\Sigma_{\left(u, y_{\mathrm{HM}}\right)}\left\{\begin{array}{l}
\dot{x}=f(x)+g(x) u \\
y_{\mathrm{HM}}=h(x)+j(x) u
\end{array}\right.
$$

with $x \in \mathbb{R}^{n}, u, y_{\text {нм }} \in \mathbb{R}^{m}$ is cyclo-passive with storage function $H(x)$ if and only if, for some $q \in \mathbb{N}$, there exist mappings $\ell(x) \in \mathbb{R}^{q}$ and $w(x) \in \mathbb{R}^{q \times m}$ such that

$$
\begin{aligned}
& \nabla^{\top} H(x) f(x)=-|\ell(x)|^{2} \\
& h(x)=g^{\top}(x) \nabla H(x)+2 w^{\top}(x) \ell(x) \\
& w^{\top}(x) w(x)=\frac{1}{2}\left(j^{\top}(x)+j(x)\right)
\end{aligned}
$$

with $\nabla(\cdot):=\left(\frac{\partial}{\partial x}(\cdot)\right)^{\top}$. In that case

$$
\dot{H}=y_{\mathrm{HM}}^{\top} u-|\ell(x)+w(x) u|^{2} .
$$

Remark In the sequel assume $H(x) \geq c \Rightarrow$ passivity.

Basic PI PBC for Output Regulation [to Zero]

Consider system $\Sigma_{\left(u, y_{\mathrm{tum}}\right)}$ in closed-loop with the PI PBC

$$
\begin{aligned}
\dot{x}_{c} & =y_{\mathrm{HM}} \\
u & =-K_{P} y_{\mathrm{HM}}-K_{l} x_{c}+v, \quad K_{P}, K_{l}>0 .
\end{aligned}
$$

Assume

$$
\operatorname{det}\left[I_{m}+K_{P} j(x)\right] \neq 0 \Rightarrow \text { Well-posedness. }
$$

- The operator $v \mapsto y$ is \mathcal{L}_{2}-stable. More precisely, $\exists \beta \in \mathbb{R}$ such that

$$
\int_{0}^{t}\left|y_{\mathrm{HM}}(s)\right|^{2} d s \leq \frac{1}{\lambda_{\min }\left(K_{P}\right)} \int_{0}^{t}|v(s)|^{2} d s+\beta, \forall t \geq 0 .
$$

- If $v=0$ and $H(x)$ is proper then $y_{\text {нм }}(t) \rightarrow 0$.

Basic PID PBC [for Relative Degree One Systems]

Consider system $\Sigma_{\left(u, y_{\text {m }}\right)}$ and $j(x)=0$, with the PID PBC

$$
\begin{aligned}
\dot{x}_{c} & =y_{\mathrm{HM}} \\
u & =-K_{P} y_{\mathrm{HM}}-K_{l} x_{c}-K_{D} \frac{d y_{\mathrm{HM}}}{d t}+v .
\end{aligned}
$$

with $K_{P}, K_{l}, K_{D}>0$ and

$$
\operatorname{det}\left[I_{m}+K_{D} \nabla^{\top} h(x) g(x)\right] \neq 0 \Rightarrow \text { Well-posedness. }
$$

- The operator $v \mapsto y$ is \mathcal{L}_{2}-stable. More precisely, $\exists \beta \in \mathbb{R}$ such that

$$
\int_{0}^{t}\left|y_{\mathrm{HM}}(s)\right|^{2} d s \leq \frac{1}{\lambda_{\min }\left(K_{P}\right)} \int_{0}^{t}|v(s)|^{2} d s+\beta, \forall t \geq 0 .
$$

- If $v=0$ and $H(x)$ is proper then $y_{\text {нм }}(t) \rightarrow 0$.

Port-Hamiltonian (pH) Systems

Model and Properties

- PH model of a physical system [with natural output]

$$
\Sigma_{(u, y)}:\left\{\begin{aligned}
\dot{x} & =[\mathcal{J}(x)-\mathcal{R}(x)] \nabla H+g(x) u \\
y & =g^{\top}(x) \nabla H
\end{aligned}\right.
$$

- $u^{\top} y$ is power (voltage-current, speed-force, angle-torque, etc.)
- $\mathcal{J}=-\mathcal{J}^{\top}$ is the interconnection matrix, specifies the internal power-conserving structure
- $\mathcal{R}=\mathcal{R}^{\top} \geq 0$ damping matrix (friction, resistors, etc.)
- PH systems are cyclo-passive $\dot{H}=-\nabla H^{\top} \mathcal{R} \nabla H+u^{\top} y$.
- Invariance of pH structure Power preserving interconnection of pH systems is pH .
- Nice geometric structure formalized with notion of Dirac structures.
- Most nonlinear cyclo-passive systems can be written as pH systems. Actually, in (network) modeling is the other way around!

Examples: Nonlinear RLC Circuits

- For any (possibly nonlinear) LC circuit we have

$$
\dot{x}=\left[\begin{array}{cc}
0 & \Gamma \\
-\Gamma^{\top} & 0
\end{array}\right] \nabla H+g u, \quad y=g^{\top} \nabla H
$$

where $x=\operatorname{col}\left(q_{C}, \phi_{L}\right), H=H_{E}\left(q_{C}\right)+H_{M}\left(\phi_{L}\right)$ - electric plus magnetic energies, Γ comes from Kirchhoff's laws and u are (external) voltage and current sources.

- Example: LTI Series RLC circuit
- Total energy,

$$
H(x)=\frac{1}{2 C} x_{1}^{2}+\frac{1}{2 L} x_{2}^{2}
$$

- Co-energy variables $\nabla H=\operatorname{col}\left(v_{C}, i_{L}\right)$,
- PH model, u voltage source

$$
\dot{x}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-1 & -R
\end{array}\right]}_{\mathcal{J}-\mathcal{R}} \underbrace{\left[\begin{array}{c}
\frac{x_{1}}{C} \\
\frac{x_{2}}{L}
\end{array}\right]}_{\nabla H}+\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{g} u, \quad y=\nabla_{x_{2}} H=\frac{x_{2}}{L}=i_{L}
$$

Mechanical Systems

- State $x=\operatorname{col}(q, p), p:=M(q) \dot{q}$ momenta.
- Total energy:

$$
H(q, p)=\frac{1}{2} p^{\top} M^{-1}(q) p+U(q)
$$

- Assuming linear friction,

$$
F=R \dot{q}, \quad R=R^{\top} \geq 0
$$

- PH model, u forces/torques

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{cc}
0 & l \\
-l & -R
\end{array}\right] \nabla H+\left[\begin{array}{c}
0 \\
G(q)
\end{array}\right] u \\
y & =\nabla_{p} H=M^{-1} p(=\dot{q})
\end{aligned}
$$

G input matrix (actuated coordinates).

Electromechanical Systems

- Assuming linear magnetics, i.e., $\phi=L(\theta) i \in \mathbb{R}^{n}, L(\theta)=L^{\top}(\theta) \geq 0$, one mechanical d.o.f., $\theta \in \mathbb{R}$, voltages $u \in \mathbb{R}^{m}$.
- State $x=\operatorname{col}(\phi, \theta, p), p=m \dot{\theta}$.
- Total energy:

$$
H(x)=\frac{1}{2} \phi^{\top} L^{-1}(\theta) \phi+\frac{1}{2 m} p^{2}+U(\theta)
$$

- Co-energy variables $\nabla H=\operatorname{col}(i,-\tau, \dot{\theta})$, where τ force (torque) of electrical origin.
- PH model

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ccc}
-R & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \nabla H+\left[\begin{array}{cc}
M & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
u \\
-\tau_{L}
\end{array}\right] \\
y & =\operatorname{col}(M i, \omega),
\end{aligned}
$$

$\tau_{L} \in \mathbb{R}$ load torque, $M \in \mathbb{R}^{n \times m}$ defines actuated coordinates.

Power Converters

- More general class of PH models:

$$
\dot{x}=[\mathcal{J}(x, u)-\mathcal{R}(x)] \nabla H+g(x, u)
$$

- The control u modifies the interconnection and input matrices
- Assuming: fast switching, u is the duty cycle.
- State $x=\operatorname{col}\left(\phi_{L}, q_{C}\right)$
- For linear L_{i}, C_{i} the total energy is

$$
H(x)=\frac{1}{2} x_{1}^{\top} L^{-1} x_{1}+\frac{1}{2} x_{2}^{\top} C^{-1} x_{2},
$$

where $L=\operatorname{diag}\left\{L_{i}\right\}, C=\operatorname{diag}\left\{C_{i}\right\}$.

Passive Outputs for Port-Hamiltonian Systems

- Hard to identify $y_{\text {нm }}$ for general (f, g, h, j) systems.
- Clearer picture for pH systems

$$
\Sigma_{(u, y)}\left\{\begin{array}{l}
\dot{x}=F(x) \nabla H(x)+g(x) u \\
y=g^{\top}(x) \nabla H(x),
\end{array}\right.
$$

with

$$
F(x):=\mathcal{J}(x)-\mathcal{R}(x) \Rightarrow F(x)+F^{\top}(x) \leq 0
$$

- All pH systems are passive but converse not true.
- Key questions
- Can we generate other passive outputs?
- With other storage functions?

Power Shaping Passive Output

- Assume $F(x)$ is full rank. The pH system

$$
\Sigma_{\left(u, y_{\mathrm{PS}}\right)} \begin{cases}\dot{x} & =F(x) \nabla H(x)+g(x) u \\ y_{\mathrm{PS}} & =-g^{\top}(x) F^{-\top}(x)[F(x) \nabla H(x)+g(x) u],\end{cases}
$$

satisfies

$$
\dot{H} \leq u^{\top} y_{\mathrm{PS}} \Rightarrow u \mapsto y_{\mathrm{PS}} \text { is passive. }
$$

- Proof: $\underbrace{\dot{x}^{\top} F^{-1}(x) \dot{x}}_{\leq 0}=\underbrace{\dot{x}^{\top} \nabla H(x)}_{\dot{H}}+\underbrace{\dot{x}^{\top} F^{-1}(x) g(x)}_{-y_{\text {es }}} u$.
- Full rank condition can be relaxed using pseudo-inverses.
- Can be extended to

$$
y_{\mathrm{EPS}}=-g^{\top}(x) F_{d}^{-\top}(x)[F(x) \nabla H(x)+g(x) u],
$$

for all $F_{d}(x)$ verifying $F_{d}(x)+F_{d}^{\top}(x) \leq 0$ and

$$
\nabla\left(F_{d}^{-1} F \nabla H\right)=\left[\nabla\left(F_{d}^{-1} F \nabla H\right)\right]^{\top}
$$

Physical Interpretation of $y_{P S}$

Nonlinear RL circuit with x the inductor flux

$H(x)$ magnetic energy stored in the inductor. A pH model is

$$
\Sigma_{(u, y)}:\left\{\begin{aligned}
\dot{x} & =-R H^{\prime}(x)+u \\
y & =H^{\prime}(x)
\end{aligned}\right.
$$

Thus, $\dot{H} \leq u y$ with y port current.

Applying Thevenin-Norton transformation

yields the new pH model

$$
\Sigma_{\left(u, y_{\mathrm{PS}}\right)}:\left\{\begin{aligned}
\dot{x} & =-R H^{\prime}(x)+u \\
y_{\mathrm{PS}} & =-H^{\prime}(x)+\frac{1}{R} u
\end{aligned}\right.
$$

Hence, $\dot{H} \leq u y_{\mathrm{PS}}$ with y_{PS} current in resistor.

Interpretation in Electro-Mechanical Systems

- The new passive output is a corollary of Thevenin-Norton equivalence.
$\bullet x=\operatorname{col}(\lambda, \theta, p) \in \mathbb{R}^{n_{e}+2}, \lambda \in \mathbb{R}^{n_{e}}$ magnetic fluxes, $\theta, p \in \mathbb{R}$ mechanical displacement and momenta, u external voltages.
- Electrical equations of this system are of the form

$$
\dot{\lambda}=-R_{e} i+B u
$$

$R_{e}=R_{e}^{\top}>0 \in \mathbb{R}^{n_{e} \times n_{e}}$ resistors, $i \in \mathbb{R}^{n_{e}}$ currents on the inductors, $\lambda=L(\theta) i$, with $L(\theta)=L^{\top}(\theta)>0$ the inductance matrix.

- The natural power port variables u and $y=B^{\top} L^{-1}(\theta) \lambda$ currents in inductors. Now,

$$
u^{\top} y_{\mathrm{PS}}=u^{\top} B^{\top} R_{e}^{-1} \dot{\lambda}
$$

where $R_{e}^{-1} \mathrm{Bu}$ are the current sources obtained from the Norton equivalent of the Thevenin representation, with $\dot{\lambda}$ the associated inductor voltages.

Thevenin-Norton Equivalence

Passive Output of Venkatraman and van der Schaft

The pH system

$$
\Sigma_{\left(u, y_{\mathrm{vv}}\right)}\left\{\begin{array}{l}
\dot{x}=F(x) \nabla H(x)+g(x) u \\
y_{\mathrm{vv}}=[g(x)+2 T(x)]^{\top} \nabla H(x)+[D(x)+S(x)] u,
\end{array}\right.
$$

where $S(x) \in \mathbb{R}^{m \times m}, D(x) \in \mathbb{R}^{m \times m}$, with

$$
S(x)=S^{\top}(x), D(x)=-D^{\top}(x)
$$

and $T(x) \in \mathbb{R}^{n \times m}$ verifies

$$
\dot{H}=-\left[\begin{array}{ll}
\nabla^{\top} H(x) & u^{\top}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\mathcal{R}(x) & T(x) \\
T^{\top}(x) & S(x)
\end{array}\right]}_{\mathcal{Z}(x)}\left[\begin{array}{c}
\nabla H(x) \\
u
\end{array}\right]+u^{\top} y_{\mathrm{vv}} .
$$

Hence

$$
\mathcal{Z}(x) \geq 0 \Rightarrow u \mapsto y_{\mathrm{vv}} \text { is passive. }
$$

A Parameterisation of ALL Passive Outputs

- Introduce the factorisation (always exists)

$$
\mathcal{R}(x)=\phi^{\top}(x) \phi(x),
$$

where $\phi(x) \in \mathbb{R}^{q \times n}$, with $q \geq \operatorname{rank}\{\mathcal{R}(x)\}$ and define

$$
y_{\mathrm{wD}}:=h(x)+j(x) u
$$

- The following statements are equivalent.
(S1) The mapping $u \mapsto y_{w D}$ is passive with storage function $H(x)$.
(S2) For any factorization of the dissipation matrix $\mathcal{R}(x)$ the mappings $h(x)$ and $j(x)$ can be expressed as

$$
\begin{aligned}
h(x) & =\left[g(x)+2 \phi^{\top}(x) w(x)\right]^{\top} \nabla H(x) \\
j(x) & =w^{\top}(x) w(x)+D(x),
\end{aligned}
$$

for some mappings $w: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q \times m}$ and $D: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times m}$, with $D(x)$ skew-symmetric.

PID-PBC Using the Incremental Model

What if the reference value is non-zero?

- Shift the output, $\tilde{y}:=y-y_{*}$ and redefine the PI

$$
\dot{x}_{c}=\tilde{y}, u=-K_{P} \tilde{y}-K_{l} x_{c}+v .
$$

- Is the map $u \mapsto \tilde{y}$ passive? Not, in general (in LTI yes)!
- y_{*} should be associated to a steady-state operation, i.e., and equilibrium $x_{*} \in \mathbb{R}^{n}$
- More precisely, for some $u_{*} \in \mathbb{R}^{m}$, we have

$$
\begin{aligned}
& 0=f\left(x_{*}\right)+g\left(x_{*}\right) u_{*} \\
& y_{*}=h\left(x_{*}\right)+j\left(x_{*}\right) u_{*},
\end{aligned}
$$

- This is true if and only if

$$
\begin{aligned}
& x_{*} \in \mathcal{E}:=\left\{x \in \mathbb{R}^{n} \mid g^{\perp}(x) f(x)=0\right\} \\
& u_{*}=-g^{\dagger}\left(x_{*}\right) f\left(x_{*}\right) .
\end{aligned}
$$

$g^{\perp}(x)$ a full-rank left-annihilator and $g^{\dagger}(x)$ a pseudo-inverse.

Equilibrium Assignment

The system

$$
\begin{aligned}
& \dot{x}=f(x)+g(x) u \\
& y=h(x)+j(x) u
\end{aligned}
$$

in closed-loop with

$$
\begin{aligned}
\dot{x}_{c} & =\tilde{y} \\
u & =-K_{P} \tilde{y}-K_{l} x_{c}
\end{aligned}
$$

with $x_{*} \in \mathcal{E}$, has an equilibrium at

$$
\left(x, x_{c}\right)=\left(x_{*},-K_{l}^{-1} u_{*}\right) .
$$

Passivity of the Incremental pH Model

Consider the pH system

$$
\dot{x}=F \nabla H(x)+g u, y=h(x)+j u
$$

- F, g and j constant.
- $u \mapsto y$ passive.
- $H(x)$ convex.

The incremental pH system

$$
\begin{aligned}
& \dot{x}=F \nabla H(x)+g u_{*}+g \tilde{u} \\
& \tilde{y}=h(x)-h\left(x_{*}\right)+j \tilde{u},
\end{aligned}
$$

is passive $\tilde{u} \mapsto \tilde{y}$ with storage function ("Bregman divergence")

$$
H_{0}(x):=H(x)-x^{\top} \nabla H\left(x_{*}\right) .
$$

Extensions and Lyapunov Stability

- Can be extended to general (f, g, h, j)-systems verifying

$$
\left[f(x)-f\left(x_{*}\right)\right]^{\top}\left[\nabla H(x)-\nabla H\left(x_{*}\right)\right] \leq 0 .
$$

- $H(x)$ strictly convex $\Rightarrow H_{0}(x)$ has a unique global minimum in x_{*} and is proper \Rightarrow is a candidate Lyapunov function.
- If so, the PI-PBC

$$
\begin{aligned}
\dot{x}_{c} & =\tilde{y} \\
u & =-K_{P} \tilde{y}-K_{l} x_{c} \quad\left(\Leftrightarrow \tilde{u}=-K_{P} \tilde{y}-K_{l} \tilde{x}_{c}\right)
\end{aligned}
$$

ensure GS of x_{*} and GAS if \tilde{y} is detectable.

- No need to know u_{*} using

$$
V_{0}\left(x, x_{c}\right):=H_{0}(x)+\frac{1}{2}\left\|x_{c}-K_{l}^{-1} u_{*}\right\|_{K_{1}}^{2} \Rightarrow \dot{V} \leq-\|\tilde{y}\|_{K_{P}}^{2}
$$

with $\|x\|_{A}:=x^{\top} A x$.

Stabilization of Nonlinear RLC Circuits

System Description

- RLC circuits consisting of interconnections of (possibly nonlinear) lumped dynamic (n_{L} inductors, n_{C} capacitors) and static (n_{R} resistors, $n_{\text {vs }}$ voltage sources and $n_{i s}$ current sources) elements.
- Capacitors and inductors are defined by

$$
i_{C}=\dot{q}_{C}, \quad v_{C}=\nabla H_{C}\left(q_{C}\right), \quad v_{L}=\dot{\phi}_{L}, \quad i_{L}=\nabla H_{L}\left(\phi_{L}\right),
$$

- Total energy

$$
H\left(\phi_{L}, q_{C}\right):=H_{L}\left(\phi_{L}\right)+H_{C}\left(q_{C}\right)
$$

- For simplicity all current (resp. voltage) controlled resistors are in series with inductors (resp. in parallel with capacitors). Thus,

$$
v_{R_{L_{i}}}=\hat{v}_{R_{L_{i}}}\left(i_{L_{i}}\right), i_{R_{c_{i}}}=\hat{i}_{R_{c_{i}}}\left(v_{C_{i}}\right)
$$

pH Model

- pH model

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{\phi}_{L} \\
\dot{q}_{C}
\end{array}\right]=\mathcal{J} \nabla H\left(\phi_{L}, q_{C}\right)-\left[\begin{array}{l}
\widehat{v}_{R_{L}}\left(\nabla H_{L}\left(\phi_{L}\right)\right) \\
\hat{i}_{R_{C}}\left(\nabla H_{C}\left(q_{C}\right)\right)
\end{array}\right]+g u} \\
\mathcal{J}=\left[\begin{array}{cc}
0 & -\Gamma \\
\Gamma^{\top} & 0
\end{array}\right], g=\left[\begin{array}{cc}
-B_{v_{S}} & 0 \\
0 & B_{i_{S}}
\end{array}\right], u=\left[\begin{array}{c}
v_{v_{S}} \\
i_{i_{s}}
\end{array}\right],
\end{gathered}
$$

and $\Gamma \in \mathbb{R}^{n_{L} \times n_{C}}$, is determined by the circuit topology.

- Port variables

$$
y=g^{\top} \nabla H\left(\phi_{L}, q_{C}\right)=\left[\begin{array}{c}
-B_{v_{S}}^{\top} \nabla H_{L}\left(\phi_{L}\right) \\
B_{i s}^{\top} \nabla H_{C}\left(q_{C}\right)
\end{array}\right] .
$$

Main Result

Consider the nonlinear RLC circuit with $\left(\phi_{L}^{\star}, q_{C}^{\star}\right) \in \mathcal{E}$ and

- Inductors and capacitors are passive and their energy functions are twice continuously differentiable and strictly convex.
- The resistors are passive and their characteristic functions are monotone non-decreasing.
Then, the circuit in closed-loop with the PI-PBC ensures all state trajectories are bounded and

$$
\lim _{t \rightarrow \infty} \tilde{y}(t)=0
$$

If, in addition, \tilde{y} is detectable

$$
\lim _{t \rightarrow \infty}\left[\begin{array}{c}
\tilde{\phi}_{L}(t) \\
\tilde{q}_{C}(t) \\
\tilde{x}_{C}(t)
\end{array}\right]=0
$$

Regulation and Trajectory Tracking for Bilinear Systems

The Class of Systems

- Model:

$$
\dot{x}(t)=A x(t)+d(t)+\sum_{i=1}^{m} u_{i}(t) B_{i} x(t)
$$

where $d(t)$ is a known signal.

- There exists $P=P^{\top}>0$ such that

$$
\begin{aligned}
\operatorname{sym}(P A) & =:-Q \leq 0 \\
\operatorname{sym}\left(P B_{i}\right) & =0,
\end{aligned}
$$

- Assignable trajectories:

$$
\dot{x}_{\star}(t)=A x_{\star}(t)+d(t)+\sum_{i=1}^{m} u_{i \star}(t) B_{i} x_{\star}(t)
$$

- Error system

$$
\dot{\tilde{x}}=\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) \tilde{x}+\sum_{i=1}^{m} \tilde{u}_{i} B_{i} x_{\star} .
$$

Passivity of the Incremental Model

Define the output $y:=\mathcal{C}\left(x_{\star}\right) x$ where

$$
\mathcal{C}:=\left[\begin{array}{c}
x_{\star}^{\top} B_{1}^{\top} \\
\vdots \\
x_{\star}^{\top} B_{m}^{\top}
\end{array}\right] P .
$$

The operator $\tilde{u} \mapsto y$ defines a passive map with the storage function

$$
V(\tilde{x}):=\frac{1}{2} \tilde{x}^{\top} P \tilde{x}
$$

More precisely

$$
\dot{V}=-\tilde{x}^{\top} Q \tilde{x}+\underbrace{\sum_{i=1}^{m} \tilde{u}_{i} \tilde{x}^{\top} P B_{i} x_{\star}}_{y^{\top} \tilde{u}}
$$

The PI Tracking Controller

The system in closed-loop with the PI-PBC

$$
\begin{aligned}
\dot{x}_{C} & =-y \\
u & =-K_{P} y+K_{1} x_{C}+u_{\star}
\end{aligned}
$$

ensures that trajectories are bounded and $\lim _{t \rightarrow \infty} y_{a}=0$, where

$$
y_{a}=\left[\begin{array}{l}
\mathcal{C} \\
\mathcal{Q}
\end{array}\right] \tilde{x} .
$$

Furthermore, if

$$
\operatorname{rank}\left[\begin{array}{l}
\mathcal{C} \\
\mathcal{Q}
\end{array}\right]=n
$$

global tracking is achieved.

Application to Power Converters

Model and Passivity Property

- pH Model

$$
\dot{x}=\left(J_{0}+\sum_{i=1}^{m} J_{i} u_{i}-R\right) \nabla H(x)+\left(G_{0}+\sum_{i=1}^{m} G_{i} u_{i}\right) E
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$ duty ratio of the switches and $E \in \mathbb{R}^{n}$ external sources, with $\sum_{i=1}^{m} G_{i} u_{i} E$ switching sources.

- Total energy stored in inductors and capacitors: $H(x)=\frac{1}{2} x^{\top} Q x$.
- Passivity of the incremental model. Define $y:=\mathcal{C} x$, where

$$
\mathcal{C}:=\left[\begin{array}{c}
E^{\top} G_{1}^{\top}-\left(x^{\star}\right)^{\top} Q J_{1} \\
\vdots \\
E^{\top} G_{m}^{\top}-\left(x^{\star}\right)^{\top} Q J_{m}
\end{array}\right] Q \in \mathbb{R}^{m \times n} .
$$

The map $\tilde{u} \mapsto \tilde{y}$ is passive with storage function $V(\tilde{x})=\frac{1}{2} \tilde{x}^{\top} Q \tilde{x}$. More precisely,

$$
\dot{V}=-\tilde{x}^{\top} Q R Q \tilde{x}+\tilde{y}^{\top} \tilde{u}
$$

I. Three-phase Rectifier

Model in dq frame

$$
\begin{aligned}
& \dot{\phi}_{d}=-\frac{r_{L}}{L} \phi_{d}+\omega \phi_{q}-\frac{\mu_{0}}{C} u_{1} q_{c}+V \\
& \dot{\phi}_{q}=-\frac{r_{L}}{L} \phi_{q}-\omega \phi_{d}-\frac{\mu_{0}}{C} u_{2} q_{C} \\
& \dot{q}_{C}=\frac{\mu_{0}}{L} u_{1} \phi_{d}+\frac{\mu_{0}}{L} u_{2} \phi_{q}-\frac{1}{C r_{c}} q_{c}-l
\end{aligned}
$$

cont'd

- pH model

$$
\begin{gathered}
x=\left(\begin{array}{l}
\phi_{d} \\
\phi_{q} \\
q_{C}
\end{array}\right), G_{0} E=\left(\begin{array}{c}
V \\
0 \\
-I
\end{array}\right), R=\left(\begin{array}{ccc}
r_{L} & 0 & 0 \\
0 & r_{L} & 0 \\
0 & 0 & \frac{1}{r_{c}}
\end{array}\right), \\
Q=\left(\begin{array}{ccc}
\frac{1}{L} & 0 & 0 \\
0 & \frac{1}{L} & 0 \\
0 & 0 & \frac{1}{C}
\end{array}\right), J_{0}=L \omega\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
J_{1}=\mu_{0}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), J_{2}=\mu_{0}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

- Control objective $x_{3}(t) \rightarrow x_{3}^{\star}>0$ power factor $\approx 1 \Rightarrow x_{2}(t) \rightarrow 0$.
- Assignable equilibria

$$
x_{1}^{\star}=\frac{L}{2 r_{L}}\left(V-\sqrt{V^{2}-\frac{4 r_{L}}{C^{2} r_{c}} x_{3}^{* 2}-\frac{4 r_{L}}{C} / x_{3}^{\star}}\right) .
$$

cont'd

- The circuit does not have switched external sources $\Rightarrow y^{\star}=0$.
- Passive output

$$
y=\frac{x_{3}^{\star} \mu_{0}}{L C}\left[\begin{array}{c}
\frac{x_{1}^{\star}}{x_{3}^{\star}} x_{3}-x_{1} \\
-x_{2}
\end{array}\right]
$$

- The detectability condition is satisfied \Rightarrow PI-PBC ensures GAS.
- Relation with Akagi's PQ method. With reactive power injection, i.e., $x_{2}^{*} \neq 0$ and in co-energy variables

$$
y=k\left[\begin{array}{c}
v_{C}^{\star} i_{d}-i_{d}^{\star} v_{C} \\
v_{C}^{*} i_{q}-i_{q}^{*} v_{C}
\end{array}\right], k \in \mathbb{R}_{+} .
$$

In Akagi two nested Pl's to make AC power $P:=v_{d} i_{d}$ equal to DC power $P_{\mathrm{DC}}:=v_{C} i_{\mathrm{DC}}$. Define $P^{*}:=v_{d} i_{d}^{*}$ and $P_{\mathrm{DC}}^{*}:=v_{C}^{*} i_{\mathrm{DC}}$. Then

$$
\begin{aligned}
P^{*} P_{\mathrm{DC}} & =P_{\mathrm{DC}}^{*} P \Leftrightarrow y_{1}=0 \\
Q^{*} P_{\mathrm{DC}} & =P_{\mathrm{DC}}^{*} Q \Leftrightarrow y_{2}=0,
\end{aligned}
$$

where $Q:=v_{d} i_{q}$ is reactive power. Thus, PI-PBC also achieves power equalisation.

II. Quadratic Converter

The goal is $V_{C 2}(t) \rightarrow V_{d}$.

Port-Hamiltonian Model

$$
\begin{gathered}
\dot{x}=\left(J_{0}+J_{1} u-R\right) \nabla H(x)+B, \\
x=\left(\begin{array}{cccc}
i_{L 1} & i_{L 2} & v_{C 1} & v_{C 2}
\end{array}\right), B=\left(\begin{array}{cccc}
\frac{E}{L_{1}} & 0 & 0 & 0
\end{array}\right)^{\top} \\
R=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{r_{L} C_{2}^{2}}
\end{array}\right), Q=\left(\begin{array}{cccc}
L_{1} & 0 & 0 & 0 \\
0 & L_{2} & 0 & 0 \\
0 & 0 & C_{1} & 0 \\
0 & 0 & 0 & C_{2}
\end{array}\right) \\
J_{0}=\frac{1}{C_{1} L_{2}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad J_{1}=\left(\begin{array}{cccc}
0 & 0 & -\frac{1}{L_{1} C_{1}} & 0 \\
0 & 0 & 0 & -\frac{1}{L_{2} C_{2}} \\
\frac{1}{L_{1} C_{1}} & 0 & 0 & 0 \\
0 & \frac{1}{L_{2} C_{2}} & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Incrementally Passive Output

- The admissible equilibria can be parameterized by the reference x_{4}^{\star} as follows

$$
x^{\star}:=\left[\begin{array}{llll}
\frac{1}{r_{L}\left(u^{\star}\right)^{2}} & \frac{1}{r_{L} u^{\star}} & u^{\star} & 1
\end{array}\right]^{\top} x_{4}^{\star}
$$

where $u^{\star}=\sqrt{\frac{E}{x_{4}^{\star}}}$ is the corresponding constant control.

- The output

$$
\tilde{y}=-\sqrt{E v_{d}} x_{1}-v_{d} x_{2}+\frac{v_{d}^{2}}{E r_{L}} x_{3}+\frac{v_{d}}{r_{L}} \sqrt{\frac{v_{d}}{E}} x_{4},
$$

is incrementally passive and detectable

- The equilibrium x^{\star} can be rendered GAS with the PI-PBC.
- The only parameters that are required are r_{L} and E, and that the tuning gains can take arbitrary positive values.
- Adaptation added to estimate r_{L}, preserving the stability properties.

III. Interleave Boost Converter

IV. Modular Multilevel Converter

Lyapunov Stabilisation via PID-PBC

Energy Shaping [\Rightarrow Constructing a Lyapunov Function]

- Define the function

$$
U\left(x, x_{c}\right):=H(x)+\frac{1}{2}\|h(x)\|_{K_{D}}^{2}+\frac{1}{2}\left\|x_{c}\right\|_{K_{1}}^{2} .
$$

- We know that

$$
\dot{U}=-\|\nabla H(x)\|_{\mathcal{R}}^{2}-\left\|y_{w D}\right\|_{K_{P}}^{2} \leq 0
$$

From a La Salle-based analysis $y_{\mathrm{wD}}(t) \rightarrow 0$.

- To prove Lyapunov stability we need a Lyapunov function: finding a function $H_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
U\left(x, x_{c}\right) \equiv H_{d}(x)
$$

Since $H_{d}(x(t))$ is non-decreasing it will be a bona fide Lyapunov function if it is positive definite.

Basic Idea

- Express x_{c} as function of $x \Leftrightarrow$ find a first integral \Leftrightarrow solving a PDE.
- We look for functions $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that the level sets

$$
\Omega_{k}:=\left\{\left(x, x_{c}\right) \mid x_{c}=\gamma(x)+\kappa\right\}
$$

are invariant, with k determined by the ICs.

- That is true if and only if

$$
\dot{x}_{c}=\dot{\gamma}=\nabla^{\top} \gamma[f(x)+g(x) u]
$$

- In that case

$$
H_{d}(x)=U(x, \gamma(x)+\kappa)
$$

Energy Shaping via Generation of First Integrals

Consider the pH system $\Sigma_{\left(u, y_{\mathrm{wD}}\right)}$ with $\dot{\dot{x}}_{c}=y_{\mathrm{wD}}$. Assume there exists mappings $w(x)$ and $D(x)$ such that the PDE

$$
\left[\begin{array}{c}
{[\nabla H(x)]^{\top} F^{\top}(x)} \\
g^{\top}(x)
\end{array}\right] \nabla \gamma(x)=\left[\begin{array}{c}
{[\nabla H(x)]^{\top}\left[g(x)+2 \phi^{\top}(x) w(x)\right]} \\
w^{\top}(x) w(x)-D(x)
\end{array}\right]
$$

admits a solution $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then,

$$
x_{c}=\gamma(x)+k
$$

for some $k \in \mathbb{R}$. Consequently,

$$
U\left(x, x_{c}\right)=H_{d}(x)=H(x)+\frac{1}{2}\|h(x)\|_{K_{D}}^{2}+\frac{1}{2}\|\gamma(x)+\kappa\|_{K_{1}}^{2} .
$$

Proof

Established showing that the PDE is equivalent to

$$
y_{w D}=\dot{\gamma}
$$

Consequently, using $\dot{x}_{c}=y_{\mathrm{wD}}$ and integrating we get

$$
x_{c}=\gamma(x)+x_{c}(0)-\gamma(x(0)) .
$$

Now, (\star) is equivalent to

$$
\begin{aligned}
& {\left[g(x)+2 \phi^{\top}(x) w(x)\right]^{\top} \nabla H(x)+\left[w^{\top}(x) w(x)+D(x)\right] u} \\
& =[\nabla \gamma(x)]^{\top}[F(x) \nabla H(x)+g(x) u] .
\end{aligned}
$$

The proof is completed equating the terms dependent and independent on u and factoring $\nabla \gamma(x)$.

Control by Interconnection

- Integral control can be represented as a pH system

$$
\begin{aligned}
& \dot{x}_{c}=u_{c} \\
& y_{c}=\nabla H_{c}\left(x_{c}\right)
\end{aligned}
$$

with state $x_{c} \in \mathbb{R}^{m}$, port variables $u_{c}, y_{c} \in \mathbb{R}^{m}$ and Hamiltonian

$$
H_{c}\left(x_{c}\right):=\frac{1}{2}\left\|x_{c}\right\|_{K_{1}}^{2} .
$$

- Add a power preserving interconnection

$$
\left[\begin{array}{c}
u \\
u_{c}
\end{array}\right]=\left[\begin{array}{cc}
0_{m \times m} & -I_{m} \\
I_{m} & 0_{m \times m}
\end{array}\right]\left[\begin{array}{c}
y \\
y_{c}
\end{array}\right] .
$$

- The closed-loop is pH with total energy function $H(x)+H_{c}\left(x_{c}\right)$.
- In Cbl the energy is shaped generating quantities that are conserved by the open loop pH system for all energy functions $H(x)$, called Casimir functions: $\mathcal{C}(x) \in \mathbb{R}^{m}$.

First Integrals vs Casimir Functions

- If $\dot{x}=\dot{\mathcal{C}}$ the function

$$
H_{d}(x):=H(x)+H_{c}(\mathcal{C}(x)+\kappa)
$$

satisfies $\dot{H}_{d} \leq 0$. Given $\mathcal{C}(x), H_{d}(x)$, can be shaped selecting H_{c}.

- Casimirs are the solutions of the PDE

$$
\left[\begin{array}{c}
F^{\top}(x) \\
g^{\top}(x)
\end{array}\right] \nabla \mathcal{C}(x)=\left[\begin{array}{c}
g(x)+2 \phi^{\top}(x) w(x) \\
w^{\top}(x) w(x)-D(x)
\end{array}\right] .
$$

- Comparing with the PDE of PID-PBC no term $\nabla H(x)$. Hence, the set of Casimirs is strictly contained in the set of solutions of our PDE.
- On the other hand, it is possible to give verifiable conditions such that the Casimirs PDE reduces to a simple integration.
- Casimirs solely determined by $F(x)$, hence, physically appealing and with a nice geometric interpretation

Solving the PDE

Consider the pH system $\Sigma_{\left(u y_{w a}\right)}$ verifying

$$
\begin{aligned}
F^{\top}(x)\left[F^{\dagger}(x)\right]^{\top}(x) F(x) & =F(x) \\
\operatorname{span}\{g(x)\} & \subseteq \operatorname{span}\{F(x)\} .
\end{aligned}
$$

Assume $F^{\dagger}(x) g_{i}(x)$, are gradient vector fields, that is,

$$
\nabla\left[F^{\dagger}(x) g_{i}(x)\right]=\left(\nabla\left[F^{\dagger}(x) g_{i}(x)\right]\right)^{\top}\left[\Leftrightarrow \exists \gamma_{i}(x) \mid \nabla \gamma_{i}(x)=-F^{\dagger}(x) g_{i}(x)\right] .
$$

Then,

$$
\gamma_{i}(x)=-\int_{0}^{1} x^{\top} F^{\dagger}(s x) g_{i}(s x) d s
$$

is a solution of the Casimir's PDE with

$$
\begin{aligned}
& w(x)=\phi(x) F^{\dagger}(x) g(x) \\
& D(x)=-g^{\top}(x)\left[F^{\dagger}(x)\right]^{\top}(x) \mathcal{J}(x) F^{\dagger}(x) g(x) .
\end{aligned}
$$

Input-Output Change of Coordinates

- Introduce a full rank matrix M and define

$$
\bar{u}:=M^{-1}(x) u, \bar{y}:=M^{\top}(x) y_{\mathrm{wD}} .
$$

- Clearly, the power balance inequality is preserved

$$
\dot{H} \leq u^{\top} y=\bar{u}^{\top} \bar{y} .
$$

- Consider the power shaping output, the new output is

$$
\bar{y}=-M^{\top}(x) g^{\top}(x) F^{-\top}(x) \dot{x}
$$

- There existes a mapping $\gamma(x)$ such that $\bar{y}=\dot{\gamma}$ iff

$$
\operatorname{rank}\left\{\left[\Lambda(x) \quad \vdots \quad\left[\Lambda_{i}(x), \Lambda_{j}(x)\right]\right]\right\}=n-m
$$

where $\Lambda \in \mathbb{R}^{n \times(n-m)}$ is full rank and verifies

$$
g^{\top}(x) F^{-\top}(x) \wedge(x)=0
$$

Static State-Feedback Implementation

Equilibrium Assignment
Consider the pH system $\Sigma_{\left(u, y_{w 0}\right)}$ with $w(x)$ and $D(x)$ such that the PDE admits a solution $\gamma(x)$. Fix an equilibrium $x^{\star} \in \mathcal{E}$ and consider the PID-PBC

$$
u=-K_{P} y_{\mathrm{wD}}-K_{l}\left(\gamma(x)-\gamma^{\star}\right)-K_{D} \frac{d y_{\mathrm{wD}}}{d t},
$$

Then, x^{\star} is an equilibrium point of the closed-loop system.

Lyapunov Stabilization

Fix $x^{\star} \in \mathcal{E}$. Consider the pH system $\Sigma_{\left(u, y_{w a}\right)}$ with the (static state-feedback) PID-PBC where $w(x)$ and $D(x)$ such that the PDE admits a solution $\gamma(x)$. Define

$$
H_{d}(x)=H(x)+\frac{1}{2}\|h(x)\|_{K_{D}}^{2}+\frac{1}{2}\left\|\gamma(x)-\gamma\left(x^{\star}\right)\right\|_{K_{l}}^{2},
$$

and assume

$$
x^{\star}=\arg \min H_{d}(x) .
$$

(i) The closed-loop system has a stable equilibrium at $x=x^{\star}$ with Lyapunov function $H_{d}(x)$.
(ii) The equilibrium is asymptotically stable if $y_{w D}$ is a detectable output for the closed-loop system.
(iii) The stability properties are global if $H_{d}(x)$ is radially unbounded.

Relation with Classical PBCs

- Energy-balancing PBC: $\dot{H}_{a}=-u_{\mathrm{EB}}^{\top} y_{\mathrm{PS}}$. Fix $K_{P}=0$ then, the PID-PBC is an EB-PBC with added energy function

$$
H_{a}(x):=\frac{1}{2}\|\gamma(x)+C\|_{K_{1}}^{2} .
$$

- IDA-PBC: Control $u=u_{\text {IDA }}(x)$ such that the closed-loop has the form

$$
\dot{x}=F_{d}(x) \nabla H_{\mathrm{IDA}}(x) .
$$

Assignable $H_{\text {IDA }}(x)$ characterized by the solutions of the PDE

$$
g^{\perp}(x)\left[F_{d}(x) \nabla H_{\mathrm{IDA}}(x)-F(x) \nabla H(x)\right]=0,
$$

and the control is uniquely defined as

$$
u_{\mathrm{IDA}}(x):=g^{\dagger}(x)\left[F_{d}(x) \nabla H_{\mathrm{IDA}}(x)-F(x) \nabla H(x)\right] .
$$

Fix $K_{P}=0$ and select $F_{d}(x)=F(x)$. Then, the energy function $H_{d}(x)$ and the control of the PID-PBC satisfy the IDA-PBC equations.

Micro Electro-mechanical Optical Switch

- pH model

$$
\dot{x}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & -b & 0 \\
0 & 0 & -\frac{1}{r}
\end{array}\right] \nabla H(x)+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u
$$

- Energy function of the system is

$$
H(x)=\frac{1}{2 m} x_{2}^{2}+\frac{1}{2} a_{1} x_{1}^{2}+\frac{1}{4} a_{2} x_{1}^{4}+\frac{1}{2 c_{1}\left(x_{1}+c_{0}\right)} x_{3}^{2} .
$$

cont'd

- Assignable equilibria: $x_{1} \in \mathbb{R}_{>0}$,

$$
\begin{aligned}
& x_{2_{\star}}=0 \\
& x_{3_{\star}}=\left(c_{0}+x_{1_{\star}}\right) \sqrt{2 c_{1} x_{1_{\star}}\left(a_{1}+a_{2} x_{1_{\star}}^{2}\right)}
\end{aligned}
$$

and the goal is to stabilize at $x_{1_{\star}}>0$.

- F is full rank and $y_{\mathrm{PS}}=\frac{1}{r} \dot{x}_{3}$, therefore $\gamma(x)=\frac{1}{r} x_{3}$.
- Finally
$\nabla^{2} H_{d}\left(x_{\star}\right)=\left[\begin{array}{ccc}a_{1}+3 a_{2} x_{1}^{2}+d_{1}^{2} d_{2} & 0 & -d_{1} d_{2} \\ 0 & \frac{1}{m} & 0 \\ -d_{1} d_{2} & 0 & d_{2}\end{array}\right]+\frac{K_{1}}{r}\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
where $d_{1}, d_{2}>0$. Then, $\nabla^{2} H_{d}\left(x_{\star}\right)>0$ for all $K_{I}>0 \Rightarrow x_{\star}$ is a stable equilibrium for the closed-loop system.
- Asymptotic stability also follows.

LTI systems: Controllability is Not Enough

- IDA-PBC for LTI systems is a universal stabiliser, in the sense that it is applicable to all stabilisable systems.
- Stabilisability is not enough for IDA-PBC of mechanical system.
- For the PID-PBC presented here even controlability is not enough.
- For LTI system F and g are constant

$$
H(x)=\frac{1}{2} x^{\top} Q x,
$$

and $x_{\star}=0$.

- The PID-PBC is $u=K x$ with

$$
K:=\left(I-K_{P} g^{\top} F^{-\top} g\right)^{-1}\left(K_{P} g^{\top} F^{-\top} F Q+K_{I} g^{\top} F^{-\top}\right)
$$

cont'd

- Consider the controllable LTI system

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
a_{1} & 1-a_{1}
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, a_{1}<0
$$

- Admits a pH representation $\dot{x}=F Q x+g u$ with $g:=\operatorname{col}(0,1)$,

$$
F:=\left[\begin{array}{cc}
-1 & a_{1} \\
\frac{1}{2} a_{1} & -a_{1}^{2}
\end{array}\right], Q:=-\frac{2}{a_{1}^{2}}\left[\begin{array}{cc}
a_{1}^{2} & a_{1} \\
a_{1} & 1-\frac{a_{1}}{2}
\end{array}\right],
$$

which satisfies $F+F^{\top}<0$ and the assumptions.

- The closed-loop is

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
a_{1}-a_{1} \tilde{k} & 1-a_{1}-\tilde{k}
\end{array}\right] x
$$

where

$$
\tilde{k}:=\frac{2}{a_{1}^{2}}\left(1+\frac{2 K_{P}}{a_{1}^{2}}\right)^{-1}\left(K_{l}+K_{P}\right) .
$$

It is unstable for all values of K_{P} and K_{l}.

Cbl vs PID-PBC and use of General Output

- Consider a pH system with $H(x)=\frac{1}{2}\left(x_{1}+x_{2}\right)^{2}+\frac{1}{2} x_{3}^{2}$ and

$$
\mathcal{J}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \mathcal{R}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], g(x)=\left[\begin{array}{c}
x_{1} \\
0 \\
1
\end{array}\right] .
$$

- The control objective is to stabilize $x^{\star}=\left(0,0, x_{3}^{\star}\right)$, with $x_{3}^{\star}<0$.
(i) The system is not stabilisable via Cbl.
(ii) Nor with PID-PBC with the power shaping output.
(iii) It is stabilisable with the PID-PBC using the output

$$
y=\left(g+2 \phi^{\top} w\right)^{\top} \nabla H+w^{\top} w u
$$

with

$$
w=\left[\begin{array}{c}
x_{1} \\
0 \\
-1
\end{array}\right], \quad \phi=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

PID-PBC of Mechanical Systems

Model and Control Objective

- pH model

$$
\left[\begin{array}{c}
\dot{q} \\
\dot{p}
\end{array}\right]=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]\left[\begin{array}{c}
\frac{\partial H}{\partial q} \\
\frac{\partial H}{\partial p}
\end{array}\right]+\left[\begin{array}{c}
0 \\
G(q)
\end{array}\right] u
$$

where $H(q, p)=\frac{1}{2} p^{\top} M^{-1}(q) p+V(q), \operatorname{rank}(G)=m<n$.

- EL model

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+\nabla V(q)=G(q) u .
$$

- Desired Lyapunov function: $H_{d}(q, p)=\frac{1}{2} p^{\top} M_{d}^{-1}(q) p+V_{d}(q)$
- $M_{d}(q)=M_{d}^{\top}(q)>0$
- $q_{\star}=\arg \min V_{d}(q)$.
- Objective Assign $H_{d}(q, p)$ as a Lyapunov function to the closed loop via PID-PBC for a class of mechanical systems.

Class of Systems

Partition $q=\operatorname{col}\left(q_{a}, q_{u}\right)$, with $q_{a} \in \mathbb{R}^{m}$ and $q_{u} \in \mathbb{R}^{n-m}$ and

$$
M(q)=\left[\begin{array}{ll}
m_{a z}(q) & m_{a u}(q) \\
m_{a u}^{\top}(q) & m_{u u}(q)
\end{array}\right]
$$

A0. The distribution spanned by the columns of $G(q)$ is involutive.
Equivalently, there exists (state and input) change of coordinates so that $G=\left[\begin{array}{c}I_{m} \\ 0\end{array}\right]$.
A1. The inertia matrix depends only on q_{u}, i.e., $M(q)=M\left(q_{u}\right)$.
A2. The sub-block matrix $m_{a a}$ of the inertia matrix is constant.
A3. The potential energy can be written as

$$
V(q)=V_{a}\left(q_{a}\right)+V_{u}\left(q_{u}\right) .
$$

Passive Outputs

- Define the signals

$$
y_{u}:=-m_{a a}^{-1} m_{a u}\left(q_{u}\right) \dot{q}_{u}, y_{a}:=m_{a a}^{-1} m_{a u}\left(q_{u}\right) \dot{q}_{u}+\dot{q}_{a}
$$

- Apply the inner-loop control

$$
u=\nabla V_{a}\left(q_{a}\right)+v
$$

- The maps $v \mapsto y_{a}$ and $v \mapsto y_{u}$ are passive with storage functions

$$
\begin{aligned}
H_{u}\left(q_{u}, \dot{q}_{u}\right) & :=\frac{1}{2} \dot{q}_{u}^{\top}\left(m_{u u}-m_{a u}^{\top} m_{a a}^{-1} m_{a u}\right) \dot{q}_{u}+V_{u}\left(q_{u}\right) \\
H_{a}(q, \dot{q}) & :=\frac{1}{2} \dot{q}^{\top}\left[\begin{array}{cc}
m_{a u}^{\top} m_{a a}^{-1} m_{a u} & m_{a u}^{\top} \\
m_{a u} & m_{a a}
\end{array}\right] \dot{q} .
\end{aligned}
$$

More precisely

$$
\dot{H}_{a}=v^{\top} y_{a}, \quad \dot{H}_{u}=v^{\top} y_{u} .
$$

Remarks on the Assumptions

- Assumption A1 implies that the shape coordinates coincide with the unactuated coordinates.
- $\mathbf{A} 1$ and $\mathbf{A} 2 \Rightarrow \exists T\left(q_{u}\right) \in \mathbb{R}^{n \times n}$ of the form

$$
T\left(q_{u}\right)=\left[\begin{array}{cc}
T_{1}\left(q_{u}\right) & 0_{(n-m) \times m} \\
T_{2}\left(q_{u}\right) & T_{3}
\end{array}\right]
$$

with $T_{3} \in \mathbb{R}^{m \times m}$ constant s.t. $M^{-1}\left(q_{u}\right)=T\left(q_{u}\right) T^{\top}\left(q_{u}\right)$.

- This class contains many benchmark examples:
- robots with flexible links (modulo A3),
- cart-pole,
- pendubot,
- spherical pendulum on a puck,
- disk-on-disk.

Well-posedness and Energy Shaping Assumptions

A4. The rows of $m_{a u}\left(q_{u}\right)$ are gradient vector fields, that is,

$$
\nabla\left(m_{a u}\right)^{i}=\left[\nabla\left(m_{a u}\right)^{i}\right]^{\top}, \forall i \in \bar{m} .
$$

Equivalently, there exists a function $V_{N}: \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m}$ such that

$$
\dot{V}_{N}=-m_{a u}\left(q_{u}\right) \dot{q}_{u}
$$

A5. There exist $k_{e}, k_{a}, k_{u} \in \mathbb{R}, K_{D}, K_{I} \in \mathbb{R}^{m \times m}, K_{D}, K_{I} \geq 0$, s.t.
(i) The matrix $K: \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m \times m}$

$$
K\left(q_{u}\right):=k_{e} I_{m}+k_{a} K_{D} T_{3} T_{3}^{\top}+k_{u} K_{D} T_{2}\left(q_{u}\right) T_{2}^{\top}\left(q_{u}\right) .
$$

verifies

$$
\operatorname{det}\left[K\left(q_{u}\right)\right] \neq 0 .
$$

cont'd

(ii) The matrix

$$
M_{d}\left(q_{u}\right)=\left[\begin{array}{cc}
A\left(q_{u}\right) & k_{a} k_{u} T_{2}^{\top}\left(q_{u}\right) K_{D} T_{3} \\
k_{a} k_{u} T_{3}^{\top} K_{D} T_{2}\left(q_{u}\right) & D\left(q_{u}\right)
\end{array}\right]^{-1}
$$

with

$$
\begin{aligned}
A\left(q_{u}\right) & :=k_{u}^{2} T_{2}^{\top}\left(q_{u}\right) K_{D} T_{2}\left(q_{u}\right)+k_{e} k_{u} l_{s} \\
D\left(q_{u}\right) & :=k_{e} k_{a} l_{m}+k_{a}^{2} T_{3}^{\top} K_{D} T_{3} .
\end{aligned}
$$

is positive definite.
(iii) The function

$$
V_{d}(q):=k_{e} k_{u} V_{u}\left(q_{u}\right)+\frac{1}{2}\left\|k_{a} q_{a}+\left(k_{u}-k_{a}\right) V_{N}\left(q_{u}\right)\right\|_{k_{l}}^{2}
$$

has an isolated minimum in q_{*}.

Main Result

Fix $q^{\star} \in \mathbb{R}^{n}$ s.t. $\nabla V_{u}\left(q_{u}^{\star}\right)=0$. The system in closed-loop with

$$
u=\nabla V_{a}\left(q_{a}\right)+v
$$

and the PID-PBC

$$
k_{e} v=-\left[K_{P} y_{d}+K_{l}\left(\gamma(q)-\gamma\left(q^{\star}\right) 0+K_{D} \dot{y}_{d}\right]\right.
$$

with

$$
y_{d}:=k_{a} y_{a}+k_{u} y_{u}
$$

has a globally stable equilibrium at $(q, \dot{q})=\left(q_{\star}, 0\right)$ with Lyapunov function

$$
H_{d}(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M_{d}(q) \dot{q}+V_{d}(q)
$$

Proof

- Note that

$$
y_{d}:=k_{a} y_{a}+k_{u} y_{u}
$$

- Consequently $v \mapsto y_{d}$ is passive with storage function

$$
k_{a} H_{a}\left(q_{u}, \dot{q}\right)+k_{u} H_{u}\left(q_{u}, \dot{q}_{u}\right)
$$

- Consequently the function

$$
U\left(q, \dot{q}, x_{c}\right):=k_{e}\left[k_{a} H_{a}\left(q_{u}, \dot{q}\right)+k_{u} H_{u}\left(q_{u}, \dot{q}_{u}\right)\right]+\frac{1}{2}\left\|x_{c}\right\|_{K_{l}}^{2}+\frac{1}{2}\left\|y_{d}\right\|_{K_{D}}^{2}
$$

verifies $\dot{U} \leq-\left\|y_{d}\right\|_{K_{P}}^{2}$.

- The proof is completed proving that Assumption A4 ensures

$$
\begin{gathered}
x_{c}(t)=\int_{0}^{t} y_{d}(s) d s=k_{a} q_{a}(t)-\left(k_{a}-k_{u}\right) V_{N}\left(q_{u}(t)\right)+\kappa \\
\Rightarrow H_{d}(q, \dot{q}) \equiv U\left(q, \dot{q}, x_{c}\right)
\end{gathered}
$$

Tracking Constant Speed Trajectories

Result can be extended verbatim to track ramps in the actuated coordinate.
Example: Tracking for inverted pendulum on a cart

- 2-DOF example $G=\operatorname{col}(0,1), q_{u}$ is the angle of the pendulum and q_{a} the position of the cart.
- The model parameters

$$
M\left(q_{u}\right)=\left[\begin{array}{cc}
1 & b \cos \left(q_{u}\right) \\
b \cos \left(q_{u}\right) & m_{3}
\end{array}\right], V\left(q_{u}\right)=a \cos \left(q_{u}\right)
$$

Assumptions A1-A4 are satisfied.

- Objective to stabilize the up-right vertical position of the pendulum and impose a ramp trajectory to the cart $q_{u}^{*}=0, q_{a}^{*}(t)=r t, r \in \mathbb{R}$.

Verifying Energy Shaping Assumption A5

- PID-PBC with $k_{a}=1$

$$
M_{d}^{-1}\left(q_{u}\right)=\left[\begin{array}{cc}
k_{u}^{2} K_{D} \frac{b^{2} \cos ^{2}\left(q_{u}\right)}{m_{3} \delta\left(q_{u}\right)}+k_{e} k_{u} & -k_{u} K_{D} b \frac{\cos \left(q_{u}\right)}{m_{3} \sqrt{\delta\left(q_{u}\right)}} \\
-k_{u} K_{D} b \frac{\cos \left(q_{u}\right)}{m_{3} \sqrt{\delta\left(q_{u}\right)}} & k_{e}+\frac{K_{D}}{m_{3}}
\end{array}\right]
$$

with $\delta\left(q_{u}\right):=m_{3}-b^{2} \cos ^{2}\left(q_{u}\right)>0$ and

$$
V_{d}(q)=a k_{e} k_{u} \cos \left(q_{u}\right)+\frac{K_{I}}{2}[q_{a}+\frac{\left(1-k_{u}\right)}{m_{3}} \underbrace{b \sin \left(q_{u}\right)}_{V_{N}\left(q_{u}\right)}]^{2} .
$$

- $0=\arg \min V_{d}(q) \Leftrightarrow k_{e} k_{u}<0$.
- No gains s.t. $M_{d}\left(q_{u}\right)>0$ for $\left|q_{u}\right| \geq \frac{\pi}{2} \Rightarrow$ stability only local
- Given any $\epsilon>0$, there exists gains s.t.

$$
M_{d}\left(q_{u}\right)>0, K\left(q_{u}\right) \neq 0, \quad \forall q_{u} \in\left[\frac{\pi}{2}-\epsilon, \frac{\pi}{2}+\epsilon\right] .
$$

Implies the domain of attraction is the whole (open) half plane.

Avoiding Cancellation of $V_{a}\left(q_{a}\right)$: Example

Potential energy $V(q)=m g \ell \cos \left(q_{u}\right)-\left(M_{c}+m\right) g \sin (\psi) q_{a}$.

https://youtu.be/CGInoXkR0FA.〇
https://youtu.be/YBcl9WlaQa0

