Semidefinite Relaxation and Statistical Estimation

A. Nemirovski

Georgia Institute of Technology

joint research with

Anatoli Juditsky

Université Grenoble Alpes

Traditional Summer School

Control, information, and optimization June 2017

What the story is about

& Ultimate Goal: Given noisy observation

 $\omega = Ax + \eta$

- x unknown signal known to belong to a given signal set $\mathcal{X} \subset \mathbb{R}^n$
- $A given \ m \times n \ sensing \ matrix$
- η observation noise,

we want to recover linear image Bx of the signal.

• **B** – given $\nu \times n$ matrix.

Models of noise:

- bounded noise: all we know is that $\eta \in \mathcal{H} \leftarrow$ given compact set in \mathbb{R}^m
- random noise: η is random with covariance matrix
 Cov[η] := E{ηη^T} ∈ Θ ← given compact subset of the cone S^m₊ of positive semidefinite m × m matrices.

An estimate is (any) function $\hat{x}(\omega) : \mathbb{R}^m \to \mathbb{R}^{\nu}$. We quantify performance of an estimate by its *risk*:

 $\begin{array}{l} \text{bounded noise:} \\ \text{Risk}_{\|\cdot\|,\mathcal{H}}[\hat{x}|\mathcal{X}] &= \sup_{\substack{x \in \mathcal{X} \\ \eta \in \mathcal{H}}} \|\hat{x}(Ax+\eta) - Bx\| \\ \text{random noise:} \\ \text{Risk}_{\|\cdot\|,\Theta}[\hat{x}|\mathcal{X}] &= \sup_{\substack{x \in \mathcal{X} \\ \eta: \text{Cov}[\eta] \in \Theta}} \text{E}\left\{ \|\hat{x}(Ax+\eta) - Bx\| \right\} \end{array}$

• $\|\cdot\|$ – given norm on \mathbb{R}^{ν}

$\omega = Ax + \eta \quad ?? \Rightarrow ?? \quad \widehat{x}(\omega) \approx Bx$

We are about to demonstrate that

• Under appropriate assumptions on \mathcal{X} , $\|\cdot\|$, \mathcal{H} one can build, in a computationally efficient fashion, a "presumably good" linear estimate

$$\widehat{x}_H(\omega) = H^T \omega$$

• The resulting estimate is nearly optimal, in certain precise sense, among all estimates, linear and nonlinear alike.

Note: Achieving these goals must impose some restrictions on the "geometry" of the data $\mathcal{X}, \|\cdot\|, \mathcal{H}, \Theta$. In what follows we assume that

- ⊖, if relevant, is a convex compact subset of the *interior* of S^m₊
- \mathcal{X} and the unit ball $\mathcal{B}_* = \{u : ||u||_* \le 1\}$ of the norm *conjugate* to $|| \cdot ||$:

 $||u||_* = \max\{u^T v : ||v|| \le 1\},$

same as \mathcal{H} , if relevant, are *ellitopes* or *spectratopes*.

Why linear estimates?

As it was announced, a "nearly optimal" linear estimate can be built in a computationally efficient fashion.

In contrast,

• *Exactly minimax optimal* estimate is *unknown* even in the simplest case when the observation is

$$\omega = x + \eta$$

with $\eta \sim \mathcal{N}(0, \sigma^2)$ and $x \in \mathcal{X} = [-1, 1]$

• "Standard" Maximum Likelihood estimate can be disastrously bad even in the simple case

$$\omega = x + \eta,$$

$$\eta \sim \mathcal{N}(0, \sigma^2 I_n), \ \mathcal{X} = \{x \in \mathbb{R}^n : ||x||_2 \le 1\}, \ Bx = x_1$$

In this case, natural implementation of ML estimate is

Build signal \tilde{x} most likely yielding the observation:

$$\omega \mapsto \widetilde{x} = \underset{\|u\|_2 \le 1}{\operatorname{argmin}} \|\omega - u\|_2$$

and take \tilde{x}_1 as the estimate of $Bx = x_1$.

For σ small and fixed and n large, with overwhelming probability $\tilde{x} = \omega/||\omega||_2 \approx \omega/\sqrt{n\sigma^2}$, implying that $|\tilde{x}_1| \leq \frac{O(1)}{\sigma\sqrt{n}}$, and the risk of the ML estimate is O(1), as compared to the minimax optimal risk $O(\sigma)$.

Ellitopes and Spectratopes

A Basic ellitope in \mathbb{R}^N is a *bounded* set \mathcal{Z} given by representation

 $\mathcal{Z} = \{ z \in \mathbb{R}^N : \exists t \in \mathcal{T} : z^T S_k z \le t_k, 1 \le k \le K \}$

where

- $S_k \succeq 0, k \leq K$
- $\mathcal{T} \subset \mathbb{R}^K_+$ is convex compact set which contains a positive vector and is *monotone*: $0 \le t' \le t \in \mathcal{T}$ implies that $t' \in \mathcal{T}$.

Examples:

A. Bounded intersection of *K* ellipsoids/elliptic cylinders centered at the origin ($\mathcal{T} = [0, 1]^K$) **B.** $\|\cdot\|_p$ -norm ball, $2 \le p \le \infty$:

$$\{ z \in \mathbb{R}^N, \| z \|_p \le 1 \} = \{ z \in \mathbb{R}^N : \exists t \in \mathcal{T} : z^T S_k z \equiv z_k^2 \le t_k, k \le K := N \}, \\ \mathcal{T} = \{ t \in \mathbb{R}^N_+ : \| t \|_{p/2} \le 1 \}$$

• Ellitope \mathcal{X} is a set represented as linear image of a basic ellitope \mathcal{Z} :

$$\mathcal{X} = \{x : \exists z \in \mathcal{Z} : x = Pz\}$$
$$\mathcal{Z} = \{z \in \mathbb{R}^N : \exists t \in \mathcal{T} : z^T S_k z \leq t_k, 1 \leq k \leq K\}$$

A Basic spectratope in \mathbb{R}^N is a *bounded* set \mathcal{Z} given by representation

 $\mathcal{Z} = \{ z \in \mathbb{R}^N : \exists t \in \mathcal{T} : S_k^2[z] \leq t_k I_{d_k}, 1 \leq k \leq K \}$

where

- $S_k[z] = \sum_{j=1}^N z_j S^{kj}$ is a $d_k \times d_k$ symmetric matrix linearly depending on z
- $\mathcal{T} \subset \mathbb{R}^K_+$ is as in the definition of ellitope.

♠ Example: Matrix box $\{z \in \mathbb{R}^{p \times q} : ||z||_{2,2} \le 1\}$ ($|| \cdot ||_{2,2}$ – spectral norm):

$$\{z \in \mathbb{R}^{p \times q} : ||z||_{2,2} \le 1\}$$
$$= \{z \in \mathbb{R}^{p \times q} : \exists t \in [0,1] : \left\lfloor \frac{|z|}{|z^T|} \right\rfloor^2 \le tI_{p+q}\}.$$

• Spectratope \mathcal{X} is a set represented as linear image of a basic spectratope \mathcal{Z} :

$$\mathcal{X} = \{x : \exists z \in \mathcal{Z} : x = Pz\} \\ \mathcal{Z} = \{z \in \mathbb{R}^N : \exists t \in \mathcal{T} : S_k^2[z] \leq t_k I_{d_k}, 1 \leq k \leq K\}$$

♠ Fact: Every ellitope is a spectratope. Indeed, if $S_k \succeq 0$, then $S_k = \sum_{j=1}^{r_k} f_{kj} f_{kj}^T \Rightarrow$

 $\{z : \exists t \in \mathcal{T} : z^T S_k z \leq t_k, k \leq K \}$ = $\{z : \exists t \in \mathcal{T}^+ : S_{kj}^2[z] := [f_{kj}^T z]^2 \leq t_{kj} I_1, j \leq r_k, k \leq K \},$ $\mathcal{T}^+ = \{\{t_{kj} \geq 0\} : \exists t \in \mathcal{T} : \sum_{j=1}^{r_k} t_{kj} \leq t_k, k \leq K \}$

♠ Fact: Ellitopes/Spectratopes admit fully algorithmic calculus: nearly all operations preserving "built-in" properties of these sets – convexity, compactness and symmetry w.r.t. the origin, like taking

- finite intersections,
- direct products,
- arithmetic sums,
- linear images,
- inverse images under linear embeddings,

as applied to ellitopes/spectratopes, result in the sets of the same type, with ellitopic/spectratopic representation of the result readily given by respective representations of the operands.

Note: In the main body of the talk, we focus on ellitopes, outlining the extensions to spectratopes at the end.

Semidefinite Relaxation on Ellitopes

Standard Semidefinite Relaxation is aimed at computationally efficient upper-bounding the maximum of quadratic form over a set *Y* given by a bunch of quadratic constraints.
 In the case of problem of the form

$$\mathsf{Opt}_* = \max_{y} \left\{ y^T B y : y^T A_k y \le a_k, k \le K \right\}$$

SDP relaxation works as follows:

• We observe that whenever $\lambda \in \mathbb{R}_+^K$, we have for feasible y

$$y^T [\sum_k \lambda_k A_k] y \le \sum_k \lambda_k a_k$$

 \Rightarrow Whenever $\lambda \geq 0$ is such that $B \preceq \sum_k \lambda_k A_k$, we have

$$y^T B y \le \sum_k \lambda_k a_k$$

for all feasible $y \Rightarrow$

$$[\mathsf{Opt}_* \leq] \mathsf{Opt} = \min_{\lambda} \left\{ \sum_k a_k \lambda_k : \lambda \geq 0, B \leq \sum_k \lambda_k A_k \right\}.$$

$$Opt_* = \max_{y \in \mathcal{Y}} y^T B y$$

 \blacklozenge When $\mathcal Y$ is an ellitope:

$$\mathcal{Y} = \{ y : \exists t \in \mathcal{T}, z : y = Pz, z^T S_k z \le t_k, k \le K \}$$

SDP relaxation can be implemented as follows:

• Let $\lambda \in \mathbb{R}_{+}^{K}$ be such that $\hat{B} := P^{T}BP \preceq \sum_{k} \lambda_{k}S_{k}$. Whenever $y \in \mathcal{Y}$, y = Pz with $z^{T}S_{k}z \leq t_{k}$, $k \leq K$, for some $t \in \mathcal{T}$, whence

$$y^{T}By = z^{T}\widehat{B}z \leq z^{T} \left[\sum_{k} \lambda_{k}S_{k}\right] z \leq \sum_{k} \lambda_{k}t_{k} \leq \phi_{\mathcal{T}}(\lambda),$$

$$\phi_{\mathcal{T}}(\lambda) := \max_{t \in \mathcal{T}} t^{T}\lambda$$

 $\Rightarrow \mathsf{Opt}_* := \leq \mathsf{Opt} = \min_{\lambda} \left\{ \phi_{\mathcal{T}}(\lambda) : \lambda \geq 0, \widehat{B} \preceq \sum_k \lambda_k S_k \right\}.$

Theorem [Ju&N,'16] In the ellitopic case, SDP relaxation is reasonably tight:

 $Opt_* \leq Opt \leq 3 \ln(\sqrt{3}K)Opt_*$

Proof. Left inequality was already verified. Let $\mathbf{T} = \{[t; \tau] : \tau > 0, t/\tau \in \mathcal{T}\} \cup \{0\}$

be the conic hull of \mathcal{T} . It is easily seen that \mathbf{T} is a regular (closed, convex, pointed and with a nonempty interior) cone with the dual cone

$$\mathbf{T}_* := \{ [g; s] : [g; s]^T [t; \tau] \ge 0 \,\forall [t; \tau] \in \mathbf{T} \} = \{ [g; s] : s \ge \phi_{\mathcal{T}}(-g) \}$$

 \Rightarrow Opt is the optimal value in the (strictly feasible and solvable) conic problem:

$$\mathsf{Opt} = \min_{\lambda,s} \left\{ s : \lambda \ge 0, \widehat{B} \preceq \sum_{k} \lambda_k S_k, [-\lambda; s] \in \mathbf{T}_* \right\} \quad (*)$$

 \Rightarrow Opt is the optimal value in the solvable dual to (*) problem:

$$Opt = \max_{Z,[t;\tau],\mu} \left\{ \operatorname{Tr}(\widehat{B}Z) : \sum_{k} [\operatorname{Tr}(S_{k}Z) - t_{k} + \mu_{k}]\lambda_{k} + \tau s = s \atop \forall (\lambda, s) \right\}$$
$$= \max_{Z,t} \left\{ \operatorname{Tr}(\widehat{B}Z) : t \in \mathcal{T}, Z \succeq 0, \operatorname{Tr}(S_{k}Z) \leq t_{k}, k \leq K \right\}$$
$$= \operatorname{Tr}(\widehat{B}Z_{*}) \quad [Z_{*} \succeq 0, \exists t^{*} \in \mathcal{T} : \operatorname{Tr}(S_{k}Z_{*}) \leq t_{k}^{*}, k \leq K]$$

 $\mathsf{Opt} = \mathsf{Tr}(\widehat{B}Z_*) \quad [Z_* \succeq 0, \exists t^* \in \mathcal{T} : \mathsf{Tr}(S_k Z_*) \le t_k^*, k \le K]$

Let

 $\widetilde{B} := Z_*^{1/2} \widehat{B} Z_*^{1/2} = U \text{Diag}\{\mu\} U^T \qquad [U \text{ is orthogonal}]$ and let $\widetilde{S}_k = U^T Z_*^{1/2} S_k Z_*^{1/2} U$, so that

 $0 \leq \widetilde{S}_k, \operatorname{Tr}(\widetilde{S}_k) = \operatorname{Tr}(Z_*^{1/2} S_k Z_*^{1/2}) = \operatorname{Tr}(S_k Z_*) \leq t_k^*.$

Let ζ be Rademacher random vector (independent entries taking values ± 1 with probability 1/2), and let $\xi = Z_*^{1/2}U\zeta$. We have

$$\mathbf{E}\{\xi\xi^{T}\} = \mathbf{E}\{Z_{*}^{1/2}U\zeta\zeta^{T}U^{T}Z_{*}^{1/2}\} = Z_{*} \\
\xi^{T}\widehat{B}\xi = \zeta^{T}U^{T}Z_{*}^{1/2}\widehat{B}Z_{*}^{1/2}U\zeta = \zeta^{T}U^{T}\widetilde{B}U\zeta \\
= \zeta^{T}\mathsf{Diag}\{\mu\}\zeta = \sum_{i}\mu_{i} = \mathsf{Tr}(\widetilde{B}) = \mathsf{Tr}\widehat{B}Z_{*}) = \mathsf{Opt} \\
\xi^{T}S_{k}\xi = \zeta^{T}U^{T}Z_{*}^{1/2}S_{k}Z_{*}^{1/2}U\zeta = \zeta^{T}\widetilde{S}_{k}\zeta$$

• When k is such that $t_k^* = 0$, we have $\tilde{S}_k = 0 \Rightarrow \xi^T S_k \xi \equiv 0$ • When k is such that $t_k^* > 0$, we have $\operatorname{Tr}(\tilde{S}_k/t_k^*) \leq 1 \Rightarrow$

$$\left[\mathbf{E}\left\{\exp\left\{\frac{\xi^T S_k \xi}{\mathbf{3}t_k^*}\right\}\right\} = \right] \mathbf{E}\left\{\exp\left\{\frac{\zeta^T \widetilde{S}_k \zeta}{\mathbf{3}t_k^*}\right\}\right\} \le \sqrt{3}$$

due to

Mini-Lemma: Let Q be positive semidefinite $N \times N$ matrix with trace ≤ 1 and ζ be N-dimensional Rademacher random vector. Then

$$\mathbf{E}\left\{\exp\left\{\zeta^{T}Q\zeta/3\right\}\right\} \leq \sqrt{3}.$$

$$\begin{array}{rcl} \mathsf{Opt} &:= & \max_{Z,t} \left\{ \mathsf{Tr}(\widehat{B}Z) : t \in \mathcal{T}, Z \succeq 0, \mathsf{Tr}(S_k Z) \leq t_k, k \leq K \right\} \\ &\geq & \mathsf{Opt}_* := \max_z \left\{ z^T \widehat{B}z : \exists t \in \mathcal{T} : z^T S_k z \leq t_k, k \leq K \right\} \\ &\xi^T \widehat{B}\xi \equiv \mathsf{Opt} \And \xi^T S_k \xi \equiv 0 \text{ if } t_k^* = 0 \And \mathsf{E}\{\exp\{\frac{\xi^T S_k \xi}{3t_k^*}\}\} \leq \sqrt{3} \text{ if } t_k^* > 0 \\ & & & (*) \end{array}$$

 $\Rightarrow [by (*)] \quad \operatorname{Prob}\{\exists k : \xi^T S_k \xi > 3 \ln(\sqrt{3}K) t_k^*\} < 1$ $\Rightarrow \exists \overline{\xi} : \overline{\xi}^T S_k \overline{\xi} \le 3 \ln(\sqrt{3}K) t_k^*, k \le K \& \overline{\xi}^T \widehat{B} \overline{\xi} = \operatorname{Opt}$ $\Rightarrow \text{setting } z = \overline{\xi} / \sqrt{3 \ln(\sqrt{3}K)}, \text{ we get}$ $z^T S_k z \le t_k^*, k \le K \& z^T \widehat{B} z = \operatorname{Opt} / [3 \ln(\sqrt{3}K)]$

 $\Rightarrow \operatorname{Opt} \leq 3 \ln(\sqrt{3}K) \operatorname{Opt}_*$

Proof of Mini-Lemma: Let $Q = \sum_i \sigma_i f_i f_i^T$ be the eigenvalue decomposition of Q, so that $f_i^T f_i = 1$, $\sigma_i \ge 0$, and $\sum_i \sigma_i \le 1$. The function

$$f(\sigma_1, ..., \sigma_N) = \mathbf{E} \left\{ e^{\frac{1}{3} \sum_i \sigma_i \zeta^T f_i f_i^T \zeta} \right\}$$

is convex on the simplex $\{\sigma \ge 0, \sum_i \sigma_i \le 1\}$ and thus attains it maximum over the simplex at a vertex, implying that for some $f = f_i$, $f^T f = 1$, it holds

$$\mathbf{E}\{\mathsf{e}^{\frac{1}{3}\zeta^{T}Q\zeta}\} \leq \mathbf{E}\{\mathsf{e}^{\frac{1}{3}(f^{T}\zeta)^{2}}\}.$$

Let $\xi \sim \mathcal{N}(0, 1)$ be independent of ζ . We have

$$\begin{split} \mathbf{E}_{\zeta} \left\{ \exp\{\frac{1}{3}(f_{i}^{T}\zeta)^{2}\} \right\} &= \mathbf{E}_{\zeta} \left\{ \mathbf{E}_{\xi} \left\{ \exp\{\left[\sqrt{2/3}f^{T}\zeta\right]\xi\} \right\} \right\} \\ &= \mathbf{E}_{\xi} \left\{ \mathbf{E}_{\zeta} \left\{ \exp\{\left[\sqrt{2/3}f^{T}\zeta\right]\xi\} \right\} \right\} = \mathbf{E}_{\xi} \left\{ \prod_{j=1}^{N} \mathbf{E}_{\zeta} \left\{ \exp\{\sqrt{2/3}\xi f_{j}\zeta_{j}\} \right\} \right\} \\ &= \mathbf{E}_{\xi} \left\{ \prod_{j=1}^{N} \cosh(\sqrt{2/3}\xi f_{j}) \right\} \leq \mathbf{E}_{\xi} \left\{ \prod_{j=1}^{N} \exp\{\xi^{2}f_{j}^{2}/3\} \right\} \\ &= \mathbf{E}_{\xi} \left\{ \exp\{\xi^{2}/3\} \right\} = \sqrt{3} \end{split}$$

What actually happened?

$$\mathsf{Opt}_* = \mathsf{max}_{z,t} \left\{ z^T \widehat{B} z : t \in \mathcal{T}, z^T S_k z \le t_k, k \le K \right\}$$
(*)

The dual form

 $Opt = \max_{Z,t} \left\{ \mathsf{Tr}(\widehat{B}Z) : Z \succeq 0, t \in \mathcal{T}, \mathsf{Tr}(S_k Z) \le t_k, k \le K \right\} \quad (D)$ of SDP relaxation

$$Opt = \min_{\lambda} \left\{ \phi_{\mathcal{T}}(\lambda) : \lambda \ge 0, \widehat{B} \preceq \sum_{k} \lambda_{k} S_{k} \right\}$$
(P)

of (*) can be interpreted as follows:

A We pass from *deterministic* feasible solutions (z, t) to (*) to *random solutions* (\tilde{z}, \tilde{t}) satisfying the constraints *at average:*

$$\mathbf{E}\{\tilde{t}\} \in \mathcal{T}, \ \mathbf{E}\{\tilde{z}^T S_k \tilde{z}\} \le \mathbf{E}\{\tilde{t}_k\}, k \le K$$

and maximize over these random solutions the *expected value* $E\{\tilde{z}^T\hat{B}\tilde{z}\}$ of the objective.

Note: What matters in the latter problem, is the expectation t of \tilde{t} and the covariance matrix Z of \tilde{z} , and in terms of t, Z, the problem is exactly (D).

• The advantage of "average" interpretation of (D) is that given an optimal solution to (D), we can build (in many ways!) associated random solution \tilde{z}, \tilde{t} and then "correct" realizations of \tilde{z}, \tilde{t} to make the corrections feasible for (*). With luck, we can control the price of the correction in terms of the actual objective, thus quantifying the "gap" between Opt and Opt_{*}.

$$\begin{array}{rcl} \mathsf{Opt}_{*} &=& \max_{z,t} \left\{ z^{T} \widehat{B} z : t \in \mathcal{T}, z^{T} S_{k} z \leq t_{k}, k \leq K \right\} \\ \mathsf{Opt} &=& \max_{Z,t} \left\{ \mathsf{Tr}(\widehat{B} Z) : Z \succeq 0, t \in \mathcal{T}, \mathsf{Tr}(S_{k} Z) \leq t_{k}, k \leq K \right\} \\ &\geq& \mathsf{Opt}_{*} \end{array}$$

In our analysis of the gap between Opt_{*} and Opt,
the random solution was ξ, t*, the objective at this solution was *identically equal to* Opt, and we ensured that

$$\mathbf{E}\{\xi^T S_k \xi\} \le t_k^*, \, k \le K$$

correction was of the form

$$\begin{aligned} \xi \mapsto z &= \left[\min_{k:t_k^* > 0} \frac{t_k^*}{\xi^T S_k \xi} \right]^{1/2} \xi \Rightarrow z^T \widehat{B} z = \left[\min_{k:t_k^* > 0} \frac{t_k^*}{\xi^T S_k \xi} \right] \text{Opt} \end{aligned}$$

$$\bullet \text{ we show that the random "price of correction"} \min_{k:t_k^* > 0} \frac{t_k^*}{\xi^T S_k \xi} \end{aligned}$$

$$\text{with positive probability is} \geq \frac{1}{3 \ln(\sqrt{3}K)} \Rightarrow \text{Opt} \leq 3 \ln(\sqrt{3}K) \text{Opt}_* \end{aligned}$$

♠ Fact: All known to us approximation results for SDP relaxations utilize the above strategy *"find good on average random solution and correct its realizations."*

Executive Summary on Conic Programming

Conic program is optimization program of the form

 $Opt(P) = \min_{x} \{c^T x : A_i x - b_i \in \mathbf{K}_i, i \le m, Px = p\}$ (P)

where \mathbf{K}_i are *regular* (convex, closed, pointed, and with a nonempty interior) cones in \mathbb{R}^{n_i} .

• **Dual to** (P) **program** stems from the desire to lower-bound Opt(P) and is as follows:

• We equip the conic constraints $A_i x - b_i \in \mathbf{K}_i$ with *La-grange multipliers* λ_i belonging to the cones

 $\mathbf{K}_i^* = \{ \lambda : \lambda^T y \ge \mathbf{0} \, \forall y \in \mathbf{K}_i \}$

dual to \mathbf{K}_i , and equip the equality constraints $Px = p \in \mathbb{R}^k$ with Lagrange multiplier $\mu \in \mathbb{R}^k$.

• Summing up the constraints in (*P*) with weights λ_i, μ , we get aggregated constraint

$$\left[\sum_{i} A_{i}^{T} \lambda_{i} + P^{T} \mu\right]^{T} x \ge \sum_{i} b_{i}^{T} \lambda_{i} + p^{T} \mu \qquad (*)$$

which is a consequence of the constraints in (P)

 \Rightarrow Whenever the left hand side in the aggregated constraint identically in x is $c^T x$, the right hand side in (*) is a lower bound on Opt(P). The dual problem

$$Opt(D) = \max_{\lambda_i,\mu} \left\{ \sum_i b_i^T \lambda_i + p^T \mu : \begin{array}{l} \lambda_i \in \mathbf{K}_i^*, i \le m \\ \sum_i A_i^T \lambda_i + P^T \mu = c \end{array} \right\}$$

is to find the best possible bound of this type.

$$Opt(P) = \min_{x} \left\{ c^{T}x : A_{i}x - b_{i} \in \mathbf{K}_{i}, Px = p \right\}$$
(P)

$$Opt(D) = \max_{\lambda,\mu} \left\{ \sum_{i} b_{i}^{T}\lambda_{i} + p^{T}\mu : \frac{\lambda_{i} \in \mathbf{K}_{i}^{*}, i \leq m}{\sum_{i} A_{i}^{T}\lambda_{i} + P^{T}\mu = e} \right\}$$
(D)

♠ A conic problem is called *strictly feasible*, if it admits a feasible solution for which the left hand sides of all conic constraints belong to the *interiors* of the right hand side cones.

Conic Duality Theorem:

[symmetry] Conic duality is symmetric: the dual problem (D) is a conic one, and its dual is (equivalent to) the primal problem (P).

[weak duality] One always have $Opt(D) \leq Opt(P)$ [strong duality] Let one of the problems (P), (D) be strictly feasible and bounded. Then the other problem is solvable, and optimal values are equal to each other: Opt(D) = Opt(P).

Near-optimality of linear estimates: Bounded noise

Situation: Given observation $\omega = Ax + \eta$ of *unknown* signal x known to belong to a given signal set \mathcal{X} , we want to recover Bx. All we know about the noise is $\eta \in \mathcal{H}$, with a known and bounded set \mathcal{H} .

We define the risk of an estimate $\omega \mapsto \hat{x}(\omega)$ as

$$\mathsf{Risk}_{\|\cdot\|,\mathcal{H}}[\widehat{x}|\mathcal{X}] = \sup_{x \in \mathcal{X}, \eta \in \mathcal{H}} \|Bx - \widehat{x}(Ax + \eta)\|$$

 \blacklozenge Assumptions: \mathcal{X}, \mathcal{H} are ellitopes, and the unit ball

 $\mathcal{B}_* = \{u : \|u\|_* \le 1\}$

of the norm conjugate to $\|\cdot\|$ is a basic ellitope, as is the case when

 $\|\cdot\| = \|\cdot\|_p, \ 1 \le p \le 2.$

Immediate observation: The situation in question reduces to the one with no noise.

Indeed, we can think that the signal underlying observation is $[x; \eta]$ rather than x. In terms of this signal,

- the observation is $\overline{A}[x; \eta] = Ax + \eta$,
- the quantity to be recovered is $\overline{B}[x; \eta] = Bx$,

• the signal $[x; \eta]$ is known to belong to $\mathcal{Y} := \mathcal{X} \times \mathcal{H}$, which is an ellitope,

 the performance of a candidate estimate is quantified by the worst-case risk

$$\mathsf{Risk}_{\|\cdot\|}[\widehat{x}|\mathcal{Y}] = \sup_{y=[x;\eta]\in\mathcal{Y}} \|\overline{B}y - \widehat{x}(\overline{A}y)\| \qquad [=\mathsf{Risk}_{\|\cdot\|,\mathcal{H}}[\widehat{x}|\mathcal{X}]]$$

 \Rightarrow We assume from now on that there is no observation noise:

 $\omega = Ax, \, x \in \mathcal{X},$

 ${\cal X}$ is an ellitope, and the risk is defined as

$$\mathsf{Risk}_{\|\cdot\|}[\widehat{x}|\mathcal{X}] = \sup_{x \in \mathcal{X}} \|Bx - \widehat{x}(Ax)\|.$$

We further lose nothing when assuming that \mathcal{X} is a basic ellitope:

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \le t_k, k \le K \}.$$

Building linear estimate. To get the minimum risk *linear* estimate $\hat{x}_H(\omega) = H^T \omega$, we need to solve the optimization problem

$$Opt_* = \min_{H} \left\{ \Phi_*(H) := \max_{x \in \mathcal{X}} \|Bx - H^T Ax\| \right\} \quad (!)$$

Difficulty: While $\Phi_*(H)$ is convex (as the supremum of a family of convex functions of H), this function could be difficult to compute

 \Rightarrow in general, (!) is intractable.

Nearly the only known cases where \mathcal{X} is an ellitope and (!) is tractable are those of

- \bullet ellipsoid ${\mathcal X}$ and Euclidean norm $\|\cdot\|$
- $\bullet \| \cdot \| = \| \cdot \|_{\infty}.$

$$\begin{aligned} \mathsf{Opt}_* &= \min_H \left\{ \Phi_*(H) := \max_{x \in \mathcal{X}} \|Bx - H^T Ax\| \right\} \\ \mathcal{X} &= \left\{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \leq t_k, k \leq K \right\} \\ \mathcal{B}_* &:= \left\{ u : \|u\|_* \leq 1 \right\} = \left\{ u \in \mathbb{R}^\nu : \exists r \in \mathcal{R} : u^T R_\ell u \leq r_\ell, \ell \leq L \right\} \end{aligned}$$

• **Observation:** $\Phi_*(H)$ is the maximum of a quadratic form over an ellitope:

$$\|v\| = \max_{u \in \mathcal{B}_*} u^T v \Rightarrow$$

$$\Phi_*(H) = \max_{[u;x] \in \mathcal{B}_* \times \mathcal{X}} u^T [B - H^T A] x$$

= $\max_{[u;x] \in \mathcal{B}_* \times \mathcal{X}} [u;x]^T W(H) [u;x],$
$$W(H) = \left[\frac{|\frac{1}{2}[B^T - A^T H]|}{|\frac{1}{2}[B^T - A^T H]|} \right]$$

 \Rightarrow by SDP relaxation, $\Phi_*(H)$ admits an efficiently computable convex upper bound

$$\Phi(H) = \min_{\lambda,\mu} \left\{ \phi_{\mathcal{T}}(\lambda) + \phi_{\mathcal{R}}(\mu) : \begin{bmatrix} \lambda \ge 0, \mu \ge 0 \\ \begin{bmatrix} \sum_{\ell} \mu_{\ell} R_{\ell} & \frac{1}{2}[B - H^{T}A] \end{bmatrix} \\ \begin{bmatrix} \frac{1}{2}[B^{T} - A^{T}H] & \sum_{k} \lambda_{k} S_{k} \end{bmatrix} \\ \begin{bmatrix} \phi_{\mathcal{T}}(\lambda) = \max_{t \in \mathcal{T}} t^{T}\lambda, \phi_{\mathcal{R}}(\mu) = \max_{r \in \mathcal{R}} r^{T}\mu \end{bmatrix} \right\}$$

⇒ We can approximate intractable problem of building the best linear estimate with efficiently solvable problem

$$Opt = \min_{\lambda,\mu,H} \left\{ \phi_{\mathcal{T}}(\lambda) + \phi_{\mathcal{R}}(\mu) : \begin{array}{c} \lambda \ge 0, \mu \ge 0\\ \left[\begin{array}{c} \sum_{\ell} \mu_{\ell} R_{\ell} & \left| \frac{1}{2} [B - H^{T} A] \right| \\ \frac{1}{2} [B^{T} - A^{T} H] & \sum_{k} \lambda_{k} S_{k} \end{array} \right] \end{array} \right\}$$

The *H*-component H_* of optimal solution to this problem yields linear estimate $\hat{x}_{H_*}(\omega) = H_*^T \omega$ satisfying

 $\mathsf{Risk}_{\|\cdot\|}[\widehat{x}_{H_*}|\mathcal{X}] \leq \mathsf{Opt} \quad [\leq 3\ln(\sqrt{3}[K+L])\mathsf{Opt}_*]$

Frequence For the set of the s

 $\mathsf{Risk}_{\|\cdot\|}[\widehat{x}_{H_*}|\mathcal{X}] \leq \mathsf{Opt} \leq 3\ln(\sqrt{3}[K+L])\mathsf{Risk}_{\|\cdot\|}^*[\mathcal{X}],$ where

$$\operatorname{Risk}_{\|\cdot\|}^*[\mathcal{X}] = \inf_{\widehat{x}(\cdot)} \operatorname{Risk}_{\|\cdot\|}[\widehat{x}|\mathcal{X}],$$

inf being taken over all estimates, linear and nonlinear alike, is the minimax optimal risk.

Sketch of the proof:

A. Consider the quantity

$$\mathfrak{R} = \max_{x} \{ \|Bx\| : Ax = 0, x \in \mathcal{X} \}$$

Claim: \Re is a lower bound on minimax optimal risk Risk $_{\|\cdot\|}^*[\mathcal{X}]$. Indeed,

• $\exists \bar{x} \in \mathcal{X} : A\bar{x} = 0 \& \|B\bar{x}\| = \Re$

 \Rightarrow observation $\omega = 0$ may come from signals $\bar{x}_{\pm} := \pm \bar{x} \in \mathcal{X}$

 \Rightarrow minimax risk cannot be less that $\Re = \frac{1}{2} \|B\bar{x}_{+} - B\bar{x}_{-}\|$.

B. Let E be a matrix with trivial kernel and columns spanning KerA. We have

 $\mathfrak{R} = \max_{y} \{ \|BEy\| : y \in \mathcal{Y} \}, \, \mathcal{Y} = \{ y : Ey \in \mathcal{X} \},$

 $\Rightarrow \mathfrak{R} = \max_{u \in \mathcal{B}_*, y \in \mathcal{Y}} u^T [BE] y$ is the maximum of a quadratic form over the ellitope $\mathcal{B}_* \times \mathcal{Y}$

 $\Rightarrow \Re$ can be tightly upper-bounded by semidefinite relaxation. On a closest inspection (heavily utilizing conic duality), *this bound turns out to be* $\geq Opt$, where Opt is the SDP relaxation bound on the risk of \hat{x}_{H_*}

 \Rightarrow Opt tightly upper-bounds \Re and thus – the minimal optimal risk.

♠ Note: Theorem is nice but not too important, since we can easily build a nearly optimal efficiently computable *nonlinear* estimate, namely, as follows:

Given observation $\omega = Ax$ with unknown $x \in \mathcal{X}$, we solve convex feasibility problem

find $\bar{x} \in \mathcal{X}$: $A\bar{x} = \omega$

and estimate Bx by $B\overline{x}$, where \overline{x} is (any) solution to the feasibility problem.

This estimate is efficiently computable under much weaker assumptions than those underlying Theorem, and *always is minimax optimal within factor 2.*

Near-optimality of linear estimates: Random noise

Situation: Given observation $\omega = Ax + \eta$ of *unknown* signal *x* known to belong to a given signal set \mathcal{X} , we want to recover Bx. All we know about the noise is that η is random with covariance matrix

$$\operatorname{Cov}[\eta] = \operatorname{E}\{\eta\eta^T\}$$

belonging to a given convex compact subset Θ of the *interior* of positive semidefinite cone.

We define the risk of an estimate $\omega \mapsto \hat{x}(\omega)$ as

$$\mathsf{Risk}_{\|\cdot\|,\Theta}[\widehat{x}|\mathcal{X}] = \sup_{\substack{x \in \mathcal{X} \\ \eta:\mathsf{Cov}[\eta] \in \Theta}} \mathbf{E} \|\widehat{x}(Ax+\eta) - Bx\|$$

Assumptions: \mathcal{X} and the unit ball \mathcal{B}_* of the norm $\|\cdot\|_*$ conjugate to $\|\cdot\|$ are ellitopes.

For example, we can handle the case $\|\cdot\| = \|\cdot\|_p$, $1 \le p \le 2$. • On a simple inspection, we lose nothing when assuming that \mathcal{X} is a basic ellitope:

$$\mathcal{X} = \{ x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \le t_k, \, k \le K \}$$

while

$$\mathcal{B}_* := \{ u : \|u\|_* \leq 1 \} = \{ u \in \mathbb{R}^{\nu} : \exists y \in \mathcal{Y} : u = My \}, \\ \mathcal{Y} = \{ y \in \mathbb{R}^N : \exists r \in \mathcal{R} : y^T R_\ell y \leq r_\ell, \ell \leq L \}.$$

Building "good" linear estimate

$$\begin{array}{rcl} \mathcal{X} &=& \{x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \leq t_k, \, k \leq K\} \\ \mathcal{B}_* &:=& \{u : \|u\|_* \leq 1\} = \{u \in \mathbb{R}^\nu : \exists y \in \mathcal{Y} : u = My\} \\ \mathcal{Y} &=& \{y \in \mathbb{R}^N : \exists r \in \mathcal{R} : y^T R_\ell y \leq r_\ell, \, \ell \leq L\} \end{array}$$

Aralysis: Let $\hat{x}_H(\omega) = H^T \omega$ be a candidate linear estimate. Let us upper-bound its risk:

$$\operatorname{Risk}_{\|\cdot\|,\Theta}[\widehat{x}_{H}|\mathcal{X}] = \sup_{\substack{x \in \mathcal{X} \\ \eta: \operatorname{Cov}[\eta] \in \Theta}} \operatorname{E}\left\{\|Bx - H^{T}(Ax + \eta)\|\right\}$$
$$\leq \sup_{\substack{x \in \mathcal{X} \\ \eta: \operatorname{Cov}[\eta] \in \Theta}} \operatorname{E}\left\{\|[B - H^{T}A]x\| + \|H^{T}\eta\|\right\}$$
$$= \max_{\substack{x \in \mathcal{X} \\ \Psi \in \mathcal{X}}} \|[B - H^{T}A]x\| + \sup_{\substack{\eta: \operatorname{Cov}[\eta] \in \Theta \\ \Psi \ast (H)}} \operatorname{E}\left\{\|H^{T}\eta\|\right\}$$

• Our ideal goal would be to select *H* as an optimal solution to the optimization problem

$$\min_{H} \{ \Phi_*(H) + \Psi_*(H) \};$$

however, functions Φ_* and $\Psi_*,$ while convex, can be difficult to compute

 \Rightarrow We indent to replace Φ_* , Ψ_* with their efficiently computable convex upper bounds.

$$\begin{array}{rcl} \mathcal{X} &=& \{x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \leq t_k, \, k \leq K\} \\ \mathcal{B}_* &:=& \{u : \|u\|_* \leq 1\} = \{u \in \mathbb{R}^\nu : \exists y \in \mathcal{Y} : u = My\}, \\ \mathcal{Y} &=& \{y \in \mathbb{R}^N : \exists r \in \mathcal{R} : y^T R_\ell y \leq r_\ell, \, \ell \leq L\} \end{array}$$

• Upper-bounding Φ_* . We already know how to upper-bound Φ_* :

$$\Phi_*(H) = \max_{x \in \mathcal{X}} \| [B - H^T A] x \|$$

= $\max_{[u;x] \in \mathcal{B}_* \times \mathcal{X}} u^T [B - H^T A] x$
= $\max_{[y;x] \in \mathcal{Y} \times \mathcal{X}} y^T M^T [B - H^T A] x$

 \Rightarrow [SDP relaxation]

$$\Phi_*(H) \leq \Phi(H) = \min_{\lambda,\mu} \left\{ \phi_{\mathcal{T}}(\lambda) + \phi_{\mathcal{R}}(\mu) : \lambda \ge 0, \mu \ge 0, \\ \left[\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2} [B^T - AH^T] M} \middle| \frac{\frac{1}{2} M^T [B - H^T A]}{\sum_k \lambda_k S_k} \right] \succeq 0 \right\}$$

$$\leq 3 \ln(\sqrt{3}[K + L]) \Phi(H).$$

 $\begin{aligned} \mathcal{B}_* &:= \{ u : \|u\|_* \leq 1 \} = \{ u \in \mathbb{R}^{\nu} : \exists y \in \mathcal{Y} : u = My \}, \\ \mathcal{Y} &= \{ y \in \mathbb{R}^N : \exists r \in \mathcal{R} : y^T R_\ell y \leq r_\ell, \, \ell \leq L \} \end{aligned}$

• Upper-bounding Ψ_* . Lemma: Let $Q = Cov[\eta]$. Then

$$\mathbf{E} \left\{ \|H^{T}\eta\| \right\} \leq \min_{G,\mu} \left\{ \phi_{\mathcal{R}}(\mu) + \operatorname{Tr}(QG) : \mu \geq 0, \\ \left[\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2} HM} \left| \frac{1}{2} M^{T} H^{T}}{G} \right] \succeq 0 \right\}$$
(*)

As a result,

$$\Psi_*(H) \leq \Psi(H) := \min_{G,\mu} \left\{ \phi_{\mathcal{R}}(\mu) + \Gamma(G) : \mu \ge 0, \\ \left[\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2} HM} \right] \stackrel{1}{\longrightarrow} 0 \right\},$$

 $\Gamma(G) = \max_{Q \in \Theta} \operatorname{Tr}(QG).$

Proof. Let (G, μ) be feasible for (*). By semidefinite constraint, we have $y^T M^T H^T \eta \leq y^T [\sum_{\ell} \mu_{\ell} R_{\ell}] y + \eta^T G \eta \ \forall y, \eta \Rightarrow$

$$\begin{split} \|H^T\eta\| &= \max_{u\in\mathcal{B}_*} u^T H^T\eta = \max_{y,r} \left\{ [My]^T H^T\eta : r\in\mathcal{R}, y^T R_\ell y \leq r_\ell, \ell \leq L \right\} \\ &\leq \max_{y,r} \left\{ y^T [\sum_\ell \mu_\ell R_\ell] y + \eta^T G\eta : r\in\mathcal{R}, y^T R_\ell y \leq r_\ell, \ell \leq L \right\} \\ &\leq \max_{r\in\mathcal{R}} \left\{ \sum_\ell \mu_\ell r_\ell \right\} + \eta^T G\eta = \phi_{\mathcal{R}}(\mu) + \eta^T G\eta. \end{split}$$

 \Rightarrow [taking expectation] $\mathbf{E}\{\|H^T\eta\|\} \leq \phi_{\mathcal{R}}(\mu) + \mathsf{Tr}(QG)$. \Box

♠ Illustration: Let $\|\cdot\| = \|\cdot\|_p$ with $1 \le p \le 2$ and $\Theta = \{Q\}$. The yielded by our construction upper bound $\Psi(H)$ on $E\{\|H^T\eta\|_p\}$, $Cov[\eta] = Q$, turns out to be

 $\left\| \left[\|Q^{1/2} \operatorname{Col}_{1}[H]\|_{2}; ...; \|Q^{1/2} \operatorname{Col}_{\nu}[H]\|_{2} \right] \right\|_{p}$

$$\begin{array}{rcl} \mathcal{X} &=& \{x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \leq t_k, \, k \leq K\} \\ \mathcal{B}_* &:=& \{u : \|u\|_* \leq 1\} = \{u \in \mathbb{R}^\nu : \exists y \in \mathcal{Y} : u = My\}, \\ \mathcal{Y} &=& \{y \in \mathbb{R}^N : \exists r \in \mathcal{R} : y^T R_\ell y \leq r_\ell, \, \ell \leq L\} \end{array}$$

Putting things together:

Theorem [Ju&N,'17] Consider convex optimization problem

$$Opt = \min_{H} \left\{ \Phi(H) + \Psi(H) \right\}$$
$$= \min_{H,G,\lambda,\mu,\mu'} \left\{ \phi_{\mathcal{T}}(\lambda) + \phi_{\mathcal{R}}(\mu) + \phi_{\mathcal{R}}(\mu') + \max_{Q \in \Theta} \operatorname{Tr}(QG) : \lambda \ge 0, \mu \ge 0, \mu' \ge 0 \right\}$$
$$\left[\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2} [B^T - A^T H] M} \left| \sum_{k} \lambda_k S_k \right| \right] \succeq 0 \right\}$$
$$\left[\frac{\sum_{\ell} \mu'_{\ell} R_{\ell}}{\frac{1}{2} HM} \left| \frac{1}{2} M^T H^T \right| \ge 0$$

The problem is efficiently solvable, and the linear estimate $\hat{x}_{H_*}(\omega) = H_*^T \omega$ induced by the *H*-component of an optimal solution satisfies the risk bound

 $\mathsf{Risk}_{\|\cdot\|,\Theta}[\widehat{x}_{H_*}|\mathcal{X}] \leq \mathsf{Opt}.$

Near-Optimality in Gaussian case

 $\begin{array}{rcl} \mathcal{X} &=& \{x \in \mathbb{R}^n : \exists t \in \mathcal{T} : x^T S_k x \leq t_k, \, k \leq K\} \\ \mathcal{B}_* &:=& \{u : \|u\|_* \leq 1\} = \{u \in \mathbb{R}^\nu : \exists y \in \mathcal{Y} : u = My\}, \\ \mathcal{Y} &=& \{y \in \mathbb{R}^N : \exists r \in \mathcal{R} : y^T R_\ell y \leq r_\ell, \, \ell \leq L\} \end{array}$

Frequence For the set of the s

$$\begin{aligned} \operatorname{Risk}_{\|\cdot\|,\Theta}[\widehat{x}_{H_*}|\mathcal{X}] &\leq \operatorname{Opt} \\ &\leq O(1) \sqrt{\ln(2L) \ln\left(\frac{2KM_*^2}{\operatorname{RiskOpt}_{\|\cdot\|,Q}^2[\mathcal{X}]}\right)} \operatorname{RiskOpt}_{\|\cdot\|,Q}[\mathcal{X}], \end{aligned}$$
(!)

where O(1) is an appropriate absolute constant,

 $M_*^2 = \max_{W} \{ \mathbf{E}_{\zeta \sim \mathcal{N}(0,W)} \{ \zeta^T B^T \zeta \} : W \succeq 0, \exists t \in \mathcal{T} : \mathrm{Tr}(WS_k) \leq t_k, k \leq K \}$ and RiskOpt_{||·||,Q}[\mathcal{X}] is the minimax optimal risk of recovering $Bx, x \in \mathcal{X}$, from noisy observation $\omega = Ax + \eta$ with zero mean Gaussian noise $\eta \sim \mathcal{N}(0,Q)$:

 $\mathsf{RiskOpt}_{\|\cdot\|,Q}[\mathcal{X}] = \inf_{\widehat{x}(\cdot)} \sup_{x \in \mathcal{X}} \mathbb{E}_{\eta \sim \mathcal{N}(0,Q)} \{ \|Bx - \widehat{x}(Ax + \eta)\| \},$ inf being taken over all estimates $\widehat{x}(\cdot)$, linear and nonlinear alike.

• Surprise: Nonoptimality factor in (!) is "nearly constant" and is independent of interplay between the geometries of \mathcal{X} , $\|\cdot\|$, A and B – the entities primarily and heavily responsible for the minimax optimal risk.

Sketch of the proof:

A. By simple saddle point argument, the upper bound \bigcirc pt on the risk of the optimal linear estimate is *as if* the set \ominus of allowed covariance matrices of observation noise was replaced with a properly selected *singleton* $\{Q\} \in \Theta$.

From now on we assume that the observation noise is $\eta \sim \mathcal{N}(0,Q)$.

B. The idea of the proof (originating from M.S. Pinsker (1982) who considered simple case where \mathcal{X} is ellipsoid, $\|\cdot\| = \|\cdot\|_2$, A = B = I) is to consider, instead of minimax optimal risk, the optimal *Bayesian* risk

 $\mathsf{RiskB}[W] = \inf_{\widehat{x}(\cdot)} \mathbf{E}_{\eta \sim \mathcal{N}(0,Q), \xi \sim \mathcal{N}(0,W)} \{ \|B\xi - \widehat{x}(A\xi + \eta)\| \},\$

where Gaussian random signal $\xi \sim \mathcal{N}(0, W)$ is independent of observation noise $\eta \sim \mathcal{N}(0, Q)$, and we are interested in the minimal, over all estimates, *expected* risk, the expectation being taken over both signal and noise.

• Similarly to the Gauss-Markov Theorem, it is easy to prove that the optimal Bayesian risk is achieved, within a moderate absolute constant factor, on a *linear* estimate (conditional expectation of $B\xi$ given $\omega = A\xi + \eta$). As a result,

$$\forall W \succeq 0 \exists H_W : \\ \underbrace{\mathbf{E}_{\xi \sim \mathcal{N}(0,W)} \left\{ \left\| \begin{bmatrix} B - H_W^T A \end{bmatrix} \xi \right\| \right\}}_{\text{bias}} + \underbrace{\mathbf{E}_{\eta \sim \mathcal{N}(0,Q)} \left\{ \left\| H_W^T \eta \right\| \right\}}_{\text{stochastic}}$$

< O(1)RiskB[W].

$$\begin{array}{l} \forall W \succeq \mathbf{0} \exists H_W : \\ \mathbf{\underline{E}}_{\xi \sim \mathcal{N}(\mathbf{0}, W)} \left\{ \| [B - H_W^T A] \xi \| \right\} + \mathbf{\underline{E}}_{\eta \sim \mathcal{N}(\mathbf{0}, Q)} \left\{ \| H_W^T \eta \| \right\} \\ \text{bias} & \text{stochastic} \\ \text{term} \\ \leq O(1) \text{RiskB}[W]. \end{array}$$

(!)

C. The key component of the proof is the fact that the efficiently computable upper bound on $\mathbf{E}_{\zeta \sim \mathcal{N}(0,Z)} \{ \| U^T \zeta \| \}$ which we used when building good linear estimate is tight:

Lemma. Let $\zeta \sim \mathcal{N}(0, Z)$ be zero mean *N*-dimensional Gaussian vector, *U* be a $N \times \nu$ matrix, and the unit ball \mathcal{B}_* of the norm conjugate to $\|\cdot\|$ be an ellitope:

 $\mathcal{B}_* = \{ u : \exists r \in \mathcal{R}, y : u = My, y^T R_\ell y \le r_\ell, \ell \le L \}.$

Then the efficiently computable upper bound

 $\Psi_{Z}(U) = \min_{G,\mu} \left\{ \phi_{\mathcal{R}}(\mu) + \operatorname{Tr}(ZG) : \mu \ge 0, \left[\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2} UM} \middle| \frac{1}{2} M^{T} U^{T}}{G} \right] \succeq 0 \right\}$ on $\mathbf{E}_{\zeta \sim \mathcal{N}(0,Z)} \left\{ \left\| U^{T} \zeta \right\| \right\}$ is tight:

$$\Psi_{Z}(U) \leq O(1) \sqrt{\ln(2L)} \mathbf{E}_{\zeta \sim \mathcal{N}(0,Z)} \left\{ \| U^{T} \zeta \| \right\}.$$

Besides this, the bound is convex in U and concave in $Z \succeq 0$. • Lemma combines with (!) to imply that

 $\forall W \succeq 0: \\ \min_{H} \left\{ \Psi_{W}(B^{T} - A^{T}H) + \Psi_{Q}(H) \right\} \leq O(1) \sqrt{\ln(2L)} \mathsf{RiskB}[W]$

 $\forall W \succeq 0: \\ \min_{H} \left\{ \Psi_{W}(B^{T} - A^{T}H) + \Psi_{Q}(H) \right\} \leq O(1)\sqrt{\ln(2L)} \mathsf{RiskB}[W]$

D. For $0 < \rho \leq 1$, let

 $\begin{array}{lll} \mathcal{Q}_{\rho} &=& \{W \succeq \mathsf{0} : \exists t \in \mathcal{T} : \mathsf{Tr}(S_k W) \leq \rho t_k, k \leq K\} = \rho \mathcal{Q}_1, \\ \mathsf{Opt}(\rho) &=& \max_{W \in \mathcal{Q}_{\rho}} \min_{H} \left[\Psi_W(B^T - A^T H) + \Psi_Q(H) \right] \\ &\leq & O(1) \sqrt{\mathsf{In}(2L)} \max_{W} \{\mathsf{RiskB}[W] : W \in \mathcal{Q}_{\rho}\} \end{array}$

It turns out that

- **D.1.** By conic duality, Opt = Opt(1)
- **D.2.** $Opt(\rho) \ge \sqrt{\rho}Opt(1), 0 \le \rho \le 1$

D.3. By the same argument as in the proof of tightness of the SDP upper bound on the maximum of a quadratic form over an ellitope, when $W \in Q_{\rho}$ and $\xi \sim \mathcal{N}(0, W)$, the probability for ξ to take value outside of \mathcal{X} rapidly goes to 0 as $\rho \rightarrow +0$:

 $\forall (\rho \leq 1, W \in \mathcal{Q}_{\rho}) : \operatorname{Prob}_{\xi \sim \mathcal{N}(0,W)} \{ \xi \notin \mathcal{X} \} \leq O(1) K \exp\{-O(1)/\rho\}.$

By **D.3**, for properly selected "moderately small" ρ one has

 $\max_{W} \{ \mathsf{RiskB}[W] : W \in \mathcal{Q}_{\rho} \} \leq O(1) \mathsf{RiskOpt}_{\|\cdot\|,Q}[\mathcal{X}]$

 \Rightarrow [by **D.1-2**] For "moderately small" ρ one has

 $\operatorname{Opt} \leq O(1) \sqrt{\ln(2L)/\rho} \operatorname{RiskOpt}_{\|\cdot\|,Q}[\mathcal{X}].$ (#)

Simple computation shows that with properly selected "moderately small" ρ , (#) implies the announced in Theorem upper bound on Opt.

From Ellitopes to Spectratopes

Fact: All our results extend from ellitopes – sets of the form

$$\mathcal{Y} = \{ y \in \mathbb{R}^N : \exists t \in \mathcal{T}, z : y = Pz, z^T S_k z \leq t_k, k \leq K \}$$

$$S_k \succeq 0, \sum_k S_k \succ 0$$

$$\mathcal{T} \subset \mathbb{R}^K_{\perp} : \text{ monotone convex compact intersecting int } \mathbb{R}^K_{\perp}$$
 (E)

which played the roles of signal sets, ranges of bounded noise, and the unit balls of the norms conjugate to $\|\cdot\|$, to a wider family – spectratopes

$$\mathcal{Y} = \{ y \in \mathbb{R}^N : \exists t \in \mathcal{T}, z : y = Pz, S_k^2[z] \leq t_k I_{d_k}, k \leq K \} \\ \begin{bmatrix} S_k[z] = \sum_j z_j S^{kj}, S^{kj} \in \mathbf{S}^{d_k}, z \neq 0 \Rightarrow \sum_k S_k^2[z] \neq 0 \\ \mathcal{T} \text{ as in } (E) \end{bmatrix}$$
(S)

With this extension, we get, e.g., access to

• matrix boxes $\mathcal{X} = \{x \in \mathbb{R}^{p \times q} : ||x||_{2,2} \leq 1\}$ or their symmetric versions $\mathcal{X} = \{x \in \mathbf{S}^p_+ : -I \leq x \leq I\}$ as signal sets

• nuclear norm $||u||_{nuc}$ (sum of singular values of a matrix) as the norm quantifying recovery error

Modifications of the results when passing from ellitopes to spectratopes are as follows:

A. The "size" *K* of an ellitope (*E*) (logs of these sizes participate in our tightness factors) in the case of spectratope (*S*) becomes $D = \sum_k d_k$

B. SDP relaxation bound for the quantity

$$Opt_* = \max_{y} \left\{ y^T B y : \exists t \in \mathcal{T}, z : y = Pz, S_k^2[z] \leq t_k I_{d_k}, k \leq K \right\}$$
$$= \max_{z,t} \left\{ z^T \widehat{B}z : t \in \mathcal{T}, S_k^2[z] \leq t_k I_{d_k}, k \leq K \right\}, \ \widehat{B} = P^T B P$$

is as follows:

We associate with $S_k[z] = \sum_j z_j S^{kj}$, $S^{kj} \in \mathbf{S}^{d_k}$, two linear mappings:

$$Q \mapsto \mathcal{S}_{k}[Q] : \mathbf{S}^{\dim z} \to \mathbf{S}^{d_{k}} :$$

$$\mathcal{S}_{k}[Q] = \sum_{i,j} \frac{1}{2} Q_{ij} [S^{ki} S^{kj} + S^{kj} S^{ki}]$$

$$\Lambda \mapsto \mathcal{S}_{k}^{*}[\Lambda] : \mathbf{S}^{d_{k}} \to \mathbf{S}^{\dim z} :$$

$$\begin{bmatrix} \mathcal{S}_{k}^{*}[\Lambda] \end{bmatrix}_{ij} = \frac{1}{2} \operatorname{Tr}(\Lambda[S^{ki} S^{kj} + S^{kj} S^{ki}])$$

Note:

• $S_k^2[z] = S_k[zz^T]$ • the mappings S_k and S_k^* are conjugates of each other w.r.t. to the Frobenius inner product:

$$\mathsf{Tr}(\mathcal{S}_k[Q]\Lambda) = \mathsf{Tr}(Q\mathcal{S}_k^*[\Lambda]) \; \forall (Q \in \mathbf{S}^{\dim z}, \Lambda \in \mathbf{S}^{d_k})$$

Selecting $\Lambda_k \succeq 0$, $k \leq K$, such that $\sum_k S_k^*[\Lambda_K] \succeq \widehat{B}$, for

$$z \in \mathcal{Z} = \{ z : \exists t \in \mathcal{T} : S_k^2[z] \leq t_k I_{d_k}, k \leq K \}$$

we have $\exists t \in \mathcal{T} : S_k^2[z] \leq t_k I_{d_k}, k \leq K \Rightarrow$

$$\begin{aligned} z^T \widehat{B}z &\leq z^T \left[\sum_k \mathcal{S}_k^*[\Lambda_k] \right] z = \sum_k z^T \mathcal{S}_k^*[\Lambda_k] z = \sum_k \operatorname{Tr}(\mathcal{S}_k^*[\Lambda_k][zz^T]) \\ &= \sum_k \operatorname{Tr}(\Lambda_k \mathcal{S}_k[zz^T]) = \sum_k \operatorname{Tr}(\Lambda_k \mathcal{S}_k^2[z]) \leq \sum_k t_k \operatorname{Tr}(\Lambda_k) \leq \phi_{\mathcal{T}}(\lambda[\Lambda]), \\ &\phi_{\mathcal{T}}(\lambda) = \max_{t \in \mathcal{T}} t^T \lambda, \, \lambda[\Lambda] = [\operatorname{Tr}(\Lambda_1); ...; \operatorname{Tr}(\Lambda_K)] \end{aligned}$$

$$\mathsf{Opt}_* \leq \mathsf{Opt} := \min_{\Lambda = \{\Lambda_k, k \leq K\}} \left\{ \phi_{\mathcal{T}}(\lambda[\Lambda]) : \Lambda_k \succeq 0, k \leq K, \widehat{B} \preceq \sum_k \mathcal{S}_k^*[\Lambda_k] \right\}$$

 \Rightarrow

• Theorem [Ju&N,'17] SDP relaxation bound

$$\mathsf{Opt} := \min_{\Lambda = \{\Lambda_k, k \le K\}} \left\{ \phi_{\mathcal{T}}(\lambda[\Lambda]) : \Lambda_k \succeq 0, k \le K, \widehat{B} \preceq \sum_k \mathcal{S}_k^*[\Lambda_k] \right\}$$

on the quantity

$$\begin{aligned} \mathsf{Opt}_* &= \max_y \left\{ y^T B y : \exists t \in \mathcal{T}, z : y = Pz, S_k^2[z] \preceq t_k I_{d_k}, k \leq K \right\} \\ &= \max_{z,t} \left\{ z^T \widehat{B} z : t \in \mathcal{T}, S_k^2[z] \preceq t_k I_{d_k}, k \leq K \right\} \end{aligned}$$

is tight:

$$\mathsf{Opt}_* \leq \mathsf{Opt} \leq 2 \ln(2 \sum_k d_k) \mathsf{Opt}_*.$$

Note: The role of elementary Mini-Lemma in the spectratopic case is played by the following fundamental matrix concentration result: **Noncommutative Khintchine Inequality** [Lust-Picard 1986, Pisier 1998,

Buchholz 2001] Let $A_i \in \mathbf{S}^d$, $1 \le i \le N$, be deterministic matrices such that

$$\sum_{i} A_i^2 \preceq I_d,$$

and let ζ be N -dimensional Rademacher random vector. Then for all $s \geq 0$ it holds

$$\operatorname{Prob}\left\{\|\sum_{i}\zeta_{i}A_{i}\|_{2,2}\geq s\right\}\leq 2d\exp\{-s^{2}/2\}.$$