Semidefinite Relaxation and Statistical Estimation

A. Nemirovski

Georgia Institute of Technology joint research with

Anatoli Juditsky
Université Grenoble Alpes

Traditional Summer School
 Control, information, and optimization June 2017

What the story is about

\& Ultimate Goal: Given noisy observation

$$
\omega=A x+\eta
$$

- x - unknown signal known to belong to a given signal set $\mathcal{X} \subset \mathbb{R}^{n}$
- $\quad A$ - given $m \times n$ sensing matrix
- $\quad \eta$-observation noise,
we want to recover linear image $B x$ of the signal.
- B - given $\nu \times n$ matrix.

${ }^{4}$ Models of noise:

- bounded noise: all we know is that $\eta \in \mathcal{H} \leftarrow$ given compact set in \mathbb{R}^{m}
- random noise: η is random with covariance matrix $\operatorname{Cov}[\eta]:=\mathrm{E}\left\{\eta \eta^{T}\right\} \in \Theta \leftarrow$ given compact subset of the cone \mathbf{S}_{+}^{m} of positive semidefinite $m \times m$ matrices.
An estimate is (any) function $\widehat{x}(\omega): \mathbb{R}^{m} \rightarrow \mathbb{R}^{\nu}$. We quantify performance of an estimate by its risk:
bounded noise:
$\operatorname{Risk}_{\|\cdot\|, \mathcal{H}}[\widehat{x} \mid \mathcal{X}]=\sup _{\substack{x \in \mathcal{X} \\ \eta \in \mathcal{H}}}\|\widehat{x}(A x+\eta)-B x\|$

random noise:

$\operatorname{Risk}_{\|\cdot\|, \Theta}[\widehat{x} \mid \mathcal{X}]=\sup _{\substack{x \in \mathcal{X} \\ \eta: \operatorname{Cov}[\eta] \in \Theta}} \mathrm{E}\{\|\widehat{x}(A x+\eta)-B x\|\}$

- $\|\cdot\|$ - given norm on \mathbb{R}^{ν}

$$
\omega=A x+\eta \quad ? ? \Rightarrow ? ? \quad \widehat{x}(\omega) \approx B x
$$

\& We are about to demonstrate that

- Under appropriate assumptions on $\mathcal{X},\|\cdot\|, \mathcal{H}$ one can build, in a computationally efficient fashion, a "presumably good" linear estimate

$$
\widehat{x}_{H}(\omega)=H^{T} \omega
$$

- The resulting estimate is nearly optimal, in certain precise sense, among all estimates, linear and nonlinear alike.
Note: Achieving these goals must impose some restrictions on the "geometry" of the data $\mathcal{X},\|\cdot\|, \mathcal{H}, \Theta$. In what follows we assume that
Θ, if relevant, is a convex compact subset of the interior of S_{+}^{m}
- \mathcal{X} and the unit ball $\mathcal{B}_{*}=\left\{u:\|u\|_{*} \leq 1\right\}$ of the norm conjugate to $\|\cdot\|$:

$$
\|u\|_{*}=\max \left\{u^{T} v:\|v\| \leq 1\right\}
$$

same as \mathcal{H}, if relevant, are ellitopes or spectratopes.

Why linear estimates?

A As it was announced, a "nearly optimal" linear estimate can be built in a computationally efficient fashion.

In contrast,

- Exactly minimax optimal estimate is unknown even in the simplest case when the observation is

$$
\omega=x+\eta
$$

with $\eta \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $x \in \mathcal{X}=[-1,1]$

- "Standard" Maximum Likelihood estimate can be disastrously bad even in the simple case

$$
\begin{gathered}
\omega=x+\eta \\
\eta \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right), \mathcal{X}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq 1\right\}, \quad B x=x_{1}
\end{gathered}
$$

In this case, natural implementation of ML estimate is

Build signal \tilde{x} most likely yielding the observation:

$$
\omega \mapsto \widetilde{x}=\underset{\|u\|_{2} \leq 1}{\operatorname{argmin}}\|\omega-u\|_{2}
$$

and take \widetilde{x}_{1} as the estimate of $B x=x_{1}$.

For σ small and fixed and n large, with overwhelming probability $\widetilde{x}=\omega /\|\omega\|_{2} \approx \omega / \sqrt{n \sigma^{2}}$, implying that $\left|\widetilde{x}_{1}\right| \leq \frac{O(1)}{\sigma \sqrt{n}}$, and the risk of the ML estimate is $O(1)$, as compared to the minimax optimal risk $O(\sigma)$.

Ellitopes and Spectratopes

Basic ellitope in \mathbb{R}^{N} is a bounded set \mathcal{Z} given by representation

$$
\mathcal{Z}=\left\{z \in \mathbb{R}^{N}: \exists t \in \mathcal{T}: z^{T} S_{k} z \leq t_{k}, 1 \leq k \leq K\right\}
$$

where

- $S_{k} \succeq 0, k \leq K$
- $\mathcal{T} \subset \mathbb{R}_{+}^{K}$ is convex compact set which contains a positive
vector and is monotone: $0 \leq t^{\prime} \leq t \in \mathcal{T}$ implies that $t^{\prime} \in \mathcal{T}$.

Examples:

A. Bounded intersection of K ellipsoids/elliptic cylinders centered at the origin $\left(\mathcal{T}=[0,1]^{K}\right)$
B. $\|\cdot\|_{p}$-norm ball, $2 \leq p \leq \infty$:

$$
\begin{aligned}
\left\{z \in \mathbb{R}^{N},\|z\|_{p} \leq 1\right\}= & \left\{z \in \mathbb{R}^{N}: \exists t \in \mathcal{T}: z^{T} S_{k} z \equiv z_{k}^{2} \leq t_{k}, k \leq K:=N\right\}, \\
& \mathcal{T}=\left\{t \in \mathbb{R}_{+}^{N}:\|t\|_{p / 2} \leq 1\right\}
\end{aligned}
$$

Ellitope \mathcal{X} is a set represented as linear image of a basic ellitope \mathcal{Z} :

$$
\begin{gathered}
\mathcal{X}=\{x: \exists z \in \mathcal{Z}: x=P z\} \\
\mathcal{Z}=\left\{z \in \mathbb{R}^{N}: \exists t \in \mathcal{T}: z^{T} S_{k} z \leq t_{k}, 1 \leq k \leq K\right\}
\end{gathered}
$$

Basic spectratope in \mathbb{R}^{N} is a bounded set \mathcal{Z} given by representation

$$
\mathcal{Z}=\left\{z \in \mathbb{R}^{N}: \exists t \in \mathcal{T}: S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, 1 \leq k \leq K\right\}
$$

where
$\bullet S_{k}[z]=\sum_{j=1}^{N} z_{j} S^{k j}$ is a $d_{k} \times d_{k}$ symmetric matrix linearly depending on z

- $\mathcal{T} \subset \mathbb{R}_{+}^{K}$ is as in the definition of ellitope.
© Example: Matrix box $\left\{z \in \mathbb{R}^{p \times q}:\|z\|_{2,2} \leq 1\right\}$
(\| $\cdot \|_{2,2}$ - spectral norm):

$$
\begin{aligned}
\left\{z \in \mathbb{R}^{p \times q}\right. & \left.:\|z\|_{2,2} \leq 1\right\} \\
& =\left\{z \in \mathbb{R}^{p \times q}: \exists t \in[0,1]:\left[\left.\frac{}{z^{T}} \right\rvert\, z\right]^{2} \preceq t I_{p+q}\right\} .
\end{aligned}
$$

Spectratope \mathcal{X} is a set represented as linear image of a basic spectratope \mathcal{Z} :

$$
\begin{gathered}
\mathcal{X}=\{x: \exists z \in \mathcal{Z}: x=P z\} \\
\mathcal{Z}=\left\{z \in \mathbb{R}^{N}: \exists t \in \mathcal{T}: S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, 1 \leq k \leq K\right\}
\end{gathered}
$$

Fact: Every ellitope is a spectratope. Indeed, if $S_{k} \succeq 0$, then $S_{k}=\sum_{j=1}^{r_{k}} f_{k j} f_{k j}^{T} \Rightarrow$

$$
\begin{aligned}
& \left\{z: \exists t \in \mathcal{T}: z^{T} S_{k} z \leq t_{k}, k \leq K\right\} \\
& =\left\{z: \exists t \in \mathcal{T}+: S_{k j}^{2}[z]:=\left[f_{k j}^{T} z\right]^{2} \preceq t_{k j} I_{1}, j \leq r_{k}, k \leq K\right\}, \\
& \mathcal{T}^{+}=\left\{\left\{t_{k j} \geq 0\right\}: \exists t \in \mathcal{T}: \sum_{j=1}^{r_{k}} t_{k j} \leq t_{k}, k \leq K\right\}
\end{aligned}
$$

Fact: Ellitopes/Spectratopes admit fully algorithmic calculus: nearly all operations preserving "built-in" properties of these sets - convexity, compactness and symmetry w.r.t. the origin, like taking

- finite intersections,
- direct products,
- arithmetic sums,
- linear images,
- inverse images under linear embeddings,
as applied to ellitopes/spectratopes, result in the sets of the same type, with ellitopic/spectratopic representation of the result readily given by respective representations of the operands.
\$ Note: In the main body of the talk, we focus on ellitopes, outlining the extensions to spectratopes at the end.

Semidefinite Relaxation on Ellitopes

\& Standard Semidefinite Relaxation is aimed at computationally efficient upper-bounding the maximum of quadratic form over a set \mathcal{Y} given by a bunch of quadratic constraints.
\leftrightarrow In the case of problem of the form

$$
\mathrm{Opt}_{*}=\max _{y}\left\{y^{T} B y: y^{T} A_{k} y \leq a_{k}, k \leq K\right\}
$$

SDP relaxation works as follows:

- We observe that whenever $\lambda \in \mathbb{R}_{+}^{K}$, we have for feasible y

$$
y^{T}\left[\sum_{k} \lambda_{k} A_{k}\right] y \leq \sum_{k} \lambda_{k} a_{k}
$$

\Rightarrow Whenever $\lambda \geq 0$ is such that $B \preceq \sum_{k} \lambda_{k} A_{k}$, we have

$$
y^{T} B y \leq \sum_{k} \lambda_{k} a_{k}
$$

for all feasible $y \Rightarrow$

$$
\text { [Opt }{ }_{*} \leq \text {] Opt }=\min _{\lambda}\left\{\sum_{k} a_{k} \lambda_{k}: \lambda \geq 0, B \preceq \sum_{k} \lambda_{k} A_{k}\right\} .
$$

$$
\mathrm{Opt}_{*}=\max _{y \in \mathcal{V}} y^{T} B y
$$

4. When \mathcal{Y} is an ellitope:

$$
\mathcal{Y}=\left\{y: \exists t \in \mathcal{T}, z: y=P z, z^{T} S_{k} z \leq t_{k}, k \leq K\right\}
$$

SDP relaxation can be implemented as follows:

- Let $\lambda \in \mathbb{R}_{+}^{K}$ be such that $\widehat{B}:=P^{T} B P \preceq \sum_{k} \lambda_{k} S_{k}$. Whenever $y \in \mathcal{Y}, y=P z$ with $z^{T} S_{k} z \leq t_{k}, k \leq K$, for some $t \in \mathcal{T}$, whence

$$
\begin{aligned}
& y^{T} B y= z^{T} \widehat{B} z \leq z^{T}\left[\sum_{k} \lambda_{k} S_{k}\right] z \leq \sum_{k} \lambda_{k} t_{k} \leq \phi_{\mathcal{T}}(\lambda) \\
& \phi_{\mathcal{T}}(\lambda):=\max _{t \in \mathcal{T}} t^{T} \lambda \\
& \Rightarrow \mathrm{Opt}_{*}:=\leq \mathrm{Opt}=\min _{\lambda}\left\{\phi_{\mathcal{T}}(\lambda): \lambda \geq 0, \widehat{B} \preceq \sum_{k} \lambda_{k} S_{k}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Opt }_{*} & =\max _{y}\left\{y^{T} B y: \exists t \in \mathcal{T}, z: y=P z, z^{T} S_{k} z \leq t_{k}, k \leq K\right\} \\
\text { Opt } & =\min _{\lambda}\left\{\phi_{\mathcal{T}}(\lambda): \lambda \geq 0, \widehat{B} \preceq \sum_{k} \lambda_{k} S_{k}\right\}
\end{aligned}
$$

Theorem [Ju\&N,'16] In the ellitopic case, SDP relaxation is reasonably tight:

$$
\mathrm{Opt}_{*} \leq \mathrm{Opt} \leq 3 \ln (\sqrt{3} K) \mathrm{Opt}_{*}
$$

Proof. Left inequality was already verified. Let

$$
\mathrm{T}=\{[\underline{t} ; \tau]: \tau>0, t / \tau \in \mathcal{T}\} \cup\{0\}
$$

be the conic hull of \mathcal{T}. It is easily seen that T is a regular (closed, convex, pointed and with a nonempty interior) cone with the dual cone

$$
\mathrm{T}_{*}:=\left\{[g ; s]:[g ; s]^{T}[t ; \tau] \geq 0 \forall[t ; \tau] \in \mathrm{T}\right\}=\left\{[g ; s]: s \geq \phi_{\mathcal{T}}(-g)\right\}
$$

\Rightarrow Opt is the optimal value in the (strictly feasible and solvable) conic problem:

$$
\begin{equation*}
\text { Opt }=\min _{\lambda, s}\left\{s: \lambda \geq 0, \widehat{B} \preceq \sum_{k} \lambda_{k} S_{k},[-\lambda ; s] \in \mathbf{T}_{*}\right\} \tag{*}
\end{equation*}
$$

\Rightarrow Opt is the optimal value in the solvable dual to $(*)$ problem:

$$
\begin{aligned}
\text { Opt } & =\max _{Z, t ; \tau], \mu}\left\{\operatorname{Tr}(\widehat{B} Z): \begin{array}{c}
Z \succeq 0, \mu \geq 0,[t ; \tau] \in \mathrm{T} \\
\sum_{k}\left[\operatorname{Tr}\left(S_{k} Z\right)-t_{k}+\mu_{k}\right] \lambda_{k}+\tau s=s \\
\forall(\lambda, s)
\end{array}\right\} \\
& =\max _{Z, t}\left\{\operatorname{Tr}(\widehat{B} Z): t \in \mathcal{T}, Z \succeq 0, \operatorname{Tr}\left(S_{k} Z\right) \leq t_{k}, k \leq K\right\} \\
& =\operatorname{Tr}\left(\widehat{B} Z_{*}\right) \quad\left[Z_{*} \succeq 0, \exists t^{*} \in \mathcal{T}: \operatorname{Tr}\left(S_{k} Z_{*}\right) \leq t_{k}^{*}, k \leq K\right]
\end{aligned}
$$

Opt $=\operatorname{Tr}\left(\widehat{B} Z_{*}\right) \quad\left[Z_{*} \succeq 0, \exists t^{*} \in \mathcal{T}: \operatorname{Tr}\left(S_{k} Z_{*}\right) \leq t_{k}^{*}, k \leq K\right]$

- Let

$$
\widetilde{B}:=Z_{*}^{1 / 2} \widehat{B} Z_{*}^{1 / 2}=U \operatorname{Diag}\{\mu\} U^{T} \quad[U \text { is orthogonal }]
$$

and let $\widetilde{S}_{k}=U^{T} Z_{*}^{1 / 2} S_{k} Z_{*}^{1 / 2} U$, so that
$0 \preceq \widetilde{S}_{k}, \operatorname{Tr}\left(\widetilde{S}_{k}\right)=\operatorname{Tr}\left(Z_{*}^{1 / 2} S_{k} Z_{*}^{1 / 2}\right)=\operatorname{Tr}\left(S_{k} Z_{*}\right) \leq t_{k}^{*}$.
Let ζ be Rademacher random vector (independent entries taking values ± 1 with probability $1 / 2$), and let $\xi=Z_{*}^{1 / 2} U \zeta$. We have

$$
\begin{aligned}
\mathrm{E}\left\{\xi \xi^{T}\right\} & =\mathrm{E}\left\{Z_{*}^{1 / 2} U \zeta \zeta^{T} U^{T} Z_{*}^{1 / 2}\right\}=Z_{*} \\
\xi^{T} \widehat{B} \xi & =\zeta^{T} U^{T} Z_{*}^{1 / 2} \widehat{B} Z_{*}^{1 / 2} U \zeta=\zeta^{T} U^{T} \widetilde{B} U \zeta \\
& \left.=\zeta^{T} \operatorname{Diag}\{\mu\} \zeta=\sum_{i} \mu_{i}=\operatorname{Tr}(\widetilde{B})=\operatorname{Tr} \widehat{B} Z_{*}\right)=\mathrm{Opt} \\
\xi^{T} S_{k} \xi & =\zeta^{T} U^{T} Z_{*}^{1 / 2} S_{k} Z_{*}^{1 / 2} U \zeta=\zeta^{\widetilde{S}} \widetilde{S}_{k} \zeta
\end{aligned}
$$

- When k is such that $t_{k}^{*}=0$, we have $\widetilde{S}_{k}=0 \Rightarrow \xi^{T} S_{k} \xi \equiv 0$
- When k is such that $t_{k}^{*}>0$, we have $\operatorname{Tr}\left(\widetilde{S}_{k} / t_{k}^{*}\right) \leq 1 \Rightarrow$

$$
\left[\mathrm{E}\left\{\exp \left\{\frac{\xi^{T} S_{k} \xi}{3 t_{k}^{*}}\right\}\right\}=\right] \mathbf{E}\left\{\exp \left\{\frac{\zeta^{T} \widetilde{S}_{k} \zeta}{3 t_{k}^{*}}\right\}\right\} \leq \sqrt{3}
$$

due to
Mini-Lemma: Let Q be positive semidefinite $N \times N$ matrix with trace ≤ 1 and ζ be N-dimensional Rademacher random vector. Then

$$
\mathbf{E}\left\{\exp \left\{\zeta^{T} Q \zeta / 3\right\}\right\} \leq \sqrt{3} .
$$

$$
\begin{aligned}
& \text { Opt }:=\max _{Z, t}\left\{\operatorname{Tr}(\widehat{B} Z): t \in \mathcal{T}, Z \succeq 0, \operatorname{Tr}\left(S_{k} Z\right) \leq t_{k}, k \leq K\right\} \\
& \geq \operatorname{Opt}_{*}:=\max _{z}\left\{z^{T} \widehat{B} z: \exists t \in \mathcal{T}: z^{T} S_{k} z \leq t_{k}, k \leq K\right\} \\
& \xi^{T} \widehat{B} \xi \equiv \text { Opt \& } \underbrace{\xi^{T} S_{k} \xi \equiv 0 \text { if } t_{k}^{*}=0 \& \mathrm{E}\left\{\exp \left\{\frac{\xi^{T} S_{k} \xi}{3 t_{k}^{*}}\right\}\right\} \leq \sqrt{3} \text { if } t_{k}^{*}>0}_{(*)} \\
& \hline
\end{aligned}
$$

$\Rightarrow[\mathrm{by}(*)] \operatorname{Prob}\left\{\exists k: \xi^{T} S_{k} \xi>3 \ln (\sqrt{3} K) t_{k}^{*}\right\}<1$
$\Rightarrow \exists \bar{\xi}: \bar{\xi}^{T} S_{k} \bar{\xi} \leq 3 \ln (\sqrt{3} K) t_{k}^{*}, k \leq K \& \bar{\xi}^{T} \widehat{B} \bar{\xi}=\mathrm{Opt}$
\Rightarrow setting $z=\bar{\xi} / \sqrt{3 \ln (\sqrt{3} K)}$, we get

$$
z^{T} S_{k} z \leq t_{k}^{*}, k \leq K \& z^{T} \widehat{B} z=\mathrm{Opt} /[3 \ln (\sqrt{3} K)]
$$

$\Rightarrow \mathrm{Opt} \leq 3 \ln (\sqrt{3} K) \mathrm{Opt}_{*}$

Proof of Mini-Lemma: Let $Q=\sum_{i} \sigma_{i} f_{i} f_{i}^{T}$ be the eigenvalue decomposition of Q, so that $f_{i}^{T} f_{i}=1, \sigma_{i} \geq 0$, and $\sum_{i} \sigma_{i} \leq 1$. The function

$$
f\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\mathbf{E}\left\{\mathrm{e}^{\frac{1}{3} \sum_{i} \sigma_{i} \zeta^{T} f_{i} T_{i}^{T} \zeta}\right\}
$$

is convex on the simplex $\left\{\sigma \geq 0, \sum_{i} \sigma_{i} \leq 1\right\}$ and thus attains it maximum over the simplex at a vertex, implying that for some $f=f_{i}, f^{T} f=1$, it holds

$$
\mathbf{E}\left\{\mathrm{e}^{\frac{1}{3} \zeta^{T} Q \zeta}\right\} \leq \mathbf{E}\left\{\mathrm{e}^{\frac{1}{3}\left(f^{T} \zeta\right)^{2}}\right\} .
$$

Let $\xi \sim \mathcal{N}(0,1)$ be independent of ζ. We have

$$
\begin{aligned}
& \mathbf{E}_{\zeta}\left\{\exp \left\{\frac{1}{3}\left(f_{i}^{T} \zeta\right)^{2}\right\}\right\}=\mathbf{E}_{\zeta}\left\{\mathbf{E}_{\xi}\left\{\exp \left\{\left[\sqrt{2 / 3} f^{T} \zeta\right] \xi\right\}\right\}\right\} \\
& =\mathbf{E}_{\xi}\left\{\mathbf{E}_{\zeta}\left\{\exp \left\{\left[\sqrt{2 / 3} f^{T} \zeta\right] \xi\right\}\right\}\right\}=\mathbf{E}_{\xi}\left\{\prod_{j=1}^{N} \mathbf{E}_{\zeta}\left\{\exp \left\{\sqrt{2 / 3} \xi f_{j} \zeta_{j}\right\}\right\}\right\} \\
& =\mathbf{E}_{\xi}\left\{\prod_{j=1}^{N} \cosh \left(\sqrt{2 / 3} \xi f_{j}\right)\right\} \leq \mathbf{E}_{\xi}\left\{\prod_{j=1}^{N} \exp \left\{\xi^{2} f_{j}^{2} / 3\right\}\right\} \\
& =\mathbf{E}_{\xi}\left\{\exp \left\{\xi^{2} / 3\right\}\right\}=\sqrt{3}
\end{aligned}
$$

What actually happened?

$$
\begin{equation*}
\text { Opt }_{*}=\max _{z, t}\left\{z^{r^{\widehat{B}}} \widehat{\widehat{B}_{z}}: t \in \mathcal{T}, z^{T} S_{k} z \leq t_{k}, k \leq K\right\} \tag{*}
\end{equation*}
$$

\& The dual form

$$
\begin{equation*}
\text { Opt }=\max _{Z, t}\left\{\operatorname{Tr}(\widehat{B} Z): Z \succeq 0, t \in \mathcal{T}, \operatorname{Tr}\left(S_{k} Z\right) \leq t_{k}, k \leq K\right\} \tag{D}
\end{equation*}
$$

of SDP relaxation

$$
\begin{equation*}
\text { Opt }=\min _{\lambda}\left\{\phi_{\mathcal{T}}(\lambda): \lambda \geq 0, \widehat{B} \preceq \sum_{k} \lambda_{k} S_{k}\right\} \tag{P}
\end{equation*}
$$

of $(*)$ can be interpreted as follows:
o We pass from deterministic feasible solutions (z, t) to ($*$) to random solutions ($\widetilde{z}, \tilde{t})$ satisfying the constraints at average:

$$
\mathbf{E}\{\tilde{t}\} \in \mathcal{T}, \mathbf{E}\left\{\tilde{z}^{T} S_{k} \tilde{z}\right\} \leq \mathbf{E}\left\{\tilde{t}_{k}\right\}, k \leq K
$$

and maximize over these random solutions the expected value $\mathrm{E}\left\{\tilde{z}^{T} \widehat{B} \tilde{z}\right\}$ of the objective.
Note: What matters in the latter problem, is the expectation t of \tilde{t} and the covariance matrix Z of \tilde{z}, and in terms of t, Z, the problem is exactly (D).

- The advantage of "average" interpretation of (D) is that given an optimal solution to (D), we can build (in many ways!) associated random solution \tilde{z}, \tilde{t} and then "correct" realizations of \tilde{z}, \tilde{t} to make the corrections feasible for (*). With luck, we can control the price of the correction in terms of the actual objective, thus quantifying the "gap" between Opt and Opt_{*}.

$$
\begin{aligned}
\text { Opt }_{*} & =\max _{z, t}\left\{z^{T} \widehat{B} z: t \in \mathcal{T}, z^{T} S_{k} z \leq t_{k}, k \leq K\right\} \\
\text { Opt } & =\max _{Z, t}\left\{\operatorname{Tr}(\widehat{B} Z): Z \succeq 0, t \in \mathcal{T}, \operatorname{Tr}\left(S_{k} Z\right) \leq t_{k}, k \leq K\right\} \\
& \geq \operatorname{Opt}_{*}
\end{aligned}
$$

$\omega_{\text {© }}$ In our analysis of the gap between Opt ${ }_{*}$ and Opt,

- the random solution was ξ, t^{*}, the objective at this solution was identically equal to Opt, and we ensured that

$$
\mathrm{E}\left\{\xi^{T} S_{k} \xi\right\} \leq t_{k}^{*}, k \leq K
$$

- correction was of the form
$\xi \mapsto z=\left[\min _{k::_{k}^{*}>0} \frac{t_{k}^{*}}{\xi^{T} S_{k} \xi}\right]^{1 / 2} \xi \Rightarrow z^{T} \widehat{B} z=\left[\min _{k: t_{k}^{*}>0} \frac{t_{k}^{*}}{\xi^{T} S_{k} \xi}\right]$ Opt
- we show that the random "price of correction" $\min _{k: t_{k}^{*}>0} \frac{t_{k}^{*}}{\xi^{T} S_{k} \xi}$ with positive probability is $\geq \frac{1}{3 \ln (\sqrt{3} K)}$

$$
\Rightarrow \mathrm{Opt} \leq 3 \ln (\sqrt{3} K) \mathrm{Opt}_{*}
$$

4. Fact: All known to us approximation results for SDP relaxations utilize the above strategy "find good on average random solution and correct its realizations."

Executive Summary on Conic Programming

Conic program is optimization program of the form

$$
\begin{equation*}
\operatorname{Opt}(P)=\min _{x}\left\{c^{T} x: A_{i} x-b_{i} \in \mathbf{K}_{i}, i \leq m, P x=p\right\} \tag{P}
\end{equation*}
$$

where K_{i} are regular (convex, closed, pointed, and with a nonempty interior) cones in $\mathbb{R}^{n_{i}}$.

Dual to (P) program stems from the desire to lower-bound Opt (P) and is as follows:

- We equip the conic constraints $A_{i} x-b_{i} \in \mathbf{K}_{i}$ with Lagrange multipliers λ_{i} belonging to the cones

$$
\mathbf{K}_{i}^{*}=\left\{\lambda: \lambda^{T} y \geq 0 \forall y \in \mathbf{K}_{i}\right\}
$$

dual to \mathbf{K}_{i}, and equip the equality constraints $P x=p \in \mathbb{R}^{k}$ with Lagrange multiplier $\mu \in \mathbb{R}^{k}$.

- Summing up the constraints in (P) with weights λ_{i}, μ, we get aggregated constraint

$$
\begin{equation*}
\left[\sum_{i} A_{i}^{T} \lambda_{i}+P^{T} \mu\right]^{T} x \geq \sum_{i} b_{i}^{T} \lambda_{i}+p^{T} \mu \tag{*}
\end{equation*}
$$

which is a consequence of the constraints in (P)
\Rightarrow Whenever the left hand side in the aggregated constraint identically in x is $c^{T} x$, the right hand side in (*) is a lower bound on Opt (P). The dual problem
$\operatorname{Opt}(D)=\max _{\lambda_{i}, \mu}\left\{\sum_{i} b_{i}^{T} \lambda_{i}+p^{T} \mu: \begin{array}{l}\lambda_{i} \in \mathbf{K}_{i}^{*}, i \leq m \\ \sum_{i} A_{i}^{T} \lambda_{i}+P^{T} \mu=c\end{array}\right\}$
is to find the best possible bound of this type.

$$
\begin{align*}
\operatorname{Opt}(P) & =\min _{x}\left\{c^{T} x: A_{i} x-b_{i} \in \mathbf{K}_{i}, P x=p\right\} \tag{P}\\
\operatorname{Opt}(D) & =\max _{\lambda, \mu}\left\{\sum_{i} b_{i}^{T} \lambda_{i}+p^{T} \mu: \begin{array}{l}
\lambda_{i} \in \mathbf{K}_{i}^{*}, i \leq m \\
\\
\sum_{i} A_{i}^{T} \lambda_{i}+P^{T} \mu=e
\end{array}\right\} \tag{D}
\end{align*}
$$

A A conic problem is called strictly feasible, if it admits a feasible solution for which the left hand sides of all conic constraints belong to the interiors of the right hand side cones.

Conic Duality Theorem:

[symmetry] Conic duality is symmetric: the dual problem (D) is a conic one, and its dual is (equivalent to) the primal problem (P).
[weak duality] One always have $\operatorname{Opt}(D) \leq \operatorname{Opt}(P)$ [strong duality] Let one of the problems (P), (D) be strictly feasible and bounded. Then the other problem is solvable, and optimal values are equal to each other: $\operatorname{Opt}(D)=\operatorname{Opt}(P)$.

Near-optimality of linear estimates: Bounded noise

\% Situation: Given observation $\omega=A x+\eta$ of unknown signal x known to belong to a given signal set \mathcal{X}, we want to recover $B x$. All we know about the noise is $\eta \in \mathcal{H}$, with a known and bounded set \mathcal{H}.
We define the risk of an estimate $\omega \mapsto \widehat{x}(\omega)$ as

$$
\text { Risk }_{\|\cdot\|, \mathcal{H}}[\widehat{x} \mid \mathcal{X}]=\sup _{x \in \mathcal{X}, \eta \in \mathcal{H}}\|B x-\widehat{x}(A x+\eta)\|
$$

Assumptions: \mathcal{X}, \mathcal{H} are ellitopes, and the unit ball

$$
\mathcal{B}_{*}=\left\{u:\|u\|_{*} \leq 1\right\}
$$

of the norm conjugate to $\|\cdot\|$ is a basic ellitope, as is the case when

$$
\|\cdot\|=\|\cdot\|_{p}, \quad 1 \leq p \leq 2
$$

© Immediate observation: The situation in question reduces to the one with no noise.
Indeed, we can think that the signal underlying observation is $[x ; \eta]$ rather than x. In terms of this signal,

- the observation is $\bar{A}[x ; \eta]=A x+\eta$,
- the quantity to be recovered is $\bar{B}[x ; \eta]=B x$,
- the signal $[x ; \eta]$ is known to belong to $\mathcal{Y}:=\mathcal{X} \times \mathcal{H}$, which is an ellitope,
- the performance of a candidate estimate is quantified by the worst-case risk

$$
\operatorname{Risk}_{\| \| \|}[\hat{x} \mid \mathcal{Y}]=\sup _{y=[x ; \eta) \in \mathcal{Y}}\|\bar{B} y-\widehat{x}(\bar{A} y)\| \quad\left[=\operatorname{Risk}_{\| \| \| \mathcal{H}}[\widehat{x} \mid \mathcal{X}]\right]
$$

\Rightarrow We assume from now on that there is no observation noise:

$$
\omega=A x, x \in \mathcal{X},
$$

\mathcal{X} is an ellitope, and the risk is defined as

$$
\operatorname{Risk}_{\|\cdot\|}[\widehat{x} \mid \mathcal{X}]=\sup _{x \in \mathcal{X}}\|B x-\widehat{x}(A x)\| .
$$

We further lose nothing when assuming that \mathcal{X} is a basic ellitope:

$$
\mathcal{X}=\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\}
$$

\& Building linear estimate. To get the minimum risk linear estimate $\widehat{x}_{H}(\omega)=H^{T} \omega$, we need to solve the optimization problem

$$
\begin{equation*}
\mathrm{Opt}_{*}=\min _{H}\left\{\Phi_{*}(H):=\max _{x \in \mathcal{X}}\left\|B x-H^{T} A x\right\|\right\} \tag{!}
\end{equation*}
$$

Difficulty: While $\Phi_{*}(H)$ is convex (as the supremum of a family of convex functions of H), this function could be difficult to compute
\Rightarrow in general, (!) is intractable.
Nearly the only known cases where \mathcal{X} is an ellitope and (!) is tractable are those of

- ellipsoid \mathcal{X} and Euclidean norm $\|\cdot\|$
- $\|\cdot\|=\|\cdot\|_{\infty}$.

$$
\begin{aligned}
& \text { Opt }_{*}=\min _{H}\left\{\Phi_{*}(H):=\max _{x \in \mathcal{X}}\left\|B x-H^{T} A x\right\|\right\} \\
\mathcal{X} & =\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\} \\
\mathcal{B}_{*} & :=\left\{u:\|u\|_{*} \leq 1\right\}=\left\{u \in \mathbb{R}^{\nu}: \exists r \in \mathcal{R}: u^{T} R_{\ell} u \leq r_{\ell}, \ell \leq L\right\}
\end{aligned}
$$

Observation: $\Phi_{*}(H)$ is the maximum of a quadratic form over an ellitope:

$$
\begin{aligned}
&\|v\|=\max _{u \in \mathcal{B}_{*}} u^{T} v \Rightarrow \\
& \Phi_{*}(H)=\max _{[u ; x] \in \mathcal{B}_{*} \times \mathcal{X}} u^{T}\left[B-H^{T} A\right] x \\
&=\max _{[u ; x] \in \mathcal{B}_{*} \times \mathcal{X}[u ; x]^{T} W(H)[u ; x],}\left[\frac{\frac{1}{2}\left[B-H^{T} A\right]}{\frac{1}{2}\left[B^{T}-A^{T} H\right]}\right]
\end{aligned}
$$

\Rightarrow by SDP relaxation, $\Phi_{*}(H)$ admits an efficiently computable convex upper bound

$$
\left.\begin{array}{r}
\Phi(H)=\min _{\lambda, \mu}\left\{\begin{array}{l}
\phi_{\mathcal{T}}(\lambda)+\phi_{\mathcal{R}}(\mu): \\
{\left[\begin{array}{l}
\lambda \geq 0, \mu \geq 0 \\
{\left[\sum_{\mathcal{T}}(\lambda)=\max _{t \in \mathcal{T}} t^{T} \lambda, \mu_{\ell} R_{\ell}\right.} \\
\frac{1}{2}\left(B_{\mathcal{R}}(\mu)=\max _{r \in \mathcal{R}} r^{T} \mu\right]
\end{array} \frac{1}{2}\left[B-H^{T} A\right]\right.} \\
\sum_{k} \lambda_{k} S_{k}
\end{array}\right]
\end{array}\right\}
$$

\Rightarrow We can approximate intractable problem of building the best linear estimate with efficiently solvable problem

$$
\text { Opt } \left.=\min _{\lambda, \mu, H}\left\{\phi_{\mathcal{T}}(\lambda)+\phi_{\mathcal{R}}(\mu): \begin{array}{l|l}
\lambda \geq 0, \mu \geq 0 \\
\sum_{\ell} \geq \mu_{\ell} R_{\ell} & \frac{1}{2}\left[B-H^{T} A\right] \\
\frac{1}{2}\left[B^{T}-A^{T} H\right] & \sum_{k} \lambda_{k} S_{k}
\end{array}\right]\right\}
$$

The H-component H_{*} of optimal solution to this problem yields linear estimate $\widehat{x}_{H_{*}}(\omega)=H_{*}^{T} \omega$ satisfying

Risk $_{\|\cdot\|}\left[\widehat{x}_{H_{*}} \mid \mathcal{X}\right] \leq$ Opt $\quad\left[\leq 3 \ln (\sqrt{3}[K+L])\right.$ Opt $\left._{*}\right]$
\& Theorem [Ju\&N,'17] The linear estimate $\widehat{x}_{H_{*}}$ yielded by (efficiently computable) optimal solution H_{*} to the above problem is near-optimal:
$\operatorname{Risk}_{\|\cdot\|}\left[\widehat{x}_{H_{*}} \mid \mathcal{X}\right] \leq$ Opt $\leq 3 \ln (\sqrt{3}[K+L])$ Risk $_{\|\cdot\|}^{*}[\mathcal{X}]$, where

$$
\operatorname{Risk}_{\|\cdot\|}^{*}[\mathcal{X}]=\inf _{\widehat{x}(\cdot)} \operatorname{Risk}_{\|\cdot\|}[\widehat{x} \mid \mathcal{X}],
$$

inf being taken over all estimates, linear and nonlinear alike, is the minimax optimal risk.

Sketch of the proof:

A. Consider the quantity

$$
\mathfrak{R}=\max _{x}\{\|B x\|: A x=0, x \in \mathcal{X}\} .
$$

Claim: \mathfrak{R} is a lower bound on minimax optimal risk Risk $_{\|\cdot\|}^{*}[\mathcal{X}]$. Indeed,

- $\exists \bar{x} \in \mathcal{X}: A \bar{x}=0 \&\|B \bar{x}\|=\mathfrak{R}$
\Rightarrow observation $\omega=0$ may come from signals $\bar{x}_{ \pm}:= \pm \bar{x} \in \mathcal{X}$
\Rightarrow minimax risk cannot be less that $\mathfrak{R}=\frac{1}{2}\left\|B \bar{x}_{+}-B \bar{x}_{-}\right\|$.
B. Let E be a matrix with trivial kernel and columns spanning $\operatorname{Ker} A$. We have

$$
\mathfrak{R}=\max _{y}\{\|B E y\|: y \in \mathcal{Y}\}, \mathcal{Y}=\{y: E y \in \mathcal{X}\},
$$

$\Rightarrow \mathfrak{R}=\max _{u \in \mathcal{B}_{*}, y \in \mathcal{Y}} u^{T}[B E] y$ is the maximum of a quadratic form over the ellitope $\mathcal{B}_{*} \times \mathcal{Y}$
$\Rightarrow \Re$ can be tightly upper-bounded by semidefinite relaxation. On a closest inspection (heavily utilizing conic duality), this bound turns out to be \geq Opt, where Opt is the SDP relaxation bound on the risk of $\widehat{x}_{H_{*}}$
\Rightarrow Opt tightly upper-bounds $\mathfrak{\Re}$ and thus - the minimal optimal risk.

Note: Theorem is nice but not too important, since we can easily build a nearly optimal efficiently computable nonlinear estimate, namely, as follows:

Given observation $\omega=A x$ with unknown $x \in \mathcal{X}$, we solve convex feasibility problem

$$
\text { find } \bar{x} \in \mathcal{X}: A \bar{x}=\omega
$$

and estimate $B x$ by $B \bar{x}$, where \bar{x} is (any) solution to the feasibility problem.

This estimate is efficiently computable under much weaker assumptions than those underlying Theorem, and always is minimax optimal within factor 2.

Near-optimality of linear estimates: Random noise

\& Situation: Given observation $\omega=A x+\eta$ of unknown signal x known to belong to a given signal set \mathcal{X}, we want to recover $B x$. All we know about the noise is that η is random with covariance matrix

$$
\operatorname{Cov}[\eta]=\mathbf{E}\left\{\eta \eta^{T}\right\}
$$

belonging to a given convex compact subset Θ of the interior of positive semidefinite cone.
We define the risk of an estimate $\omega \mapsto \widehat{x}(\omega)$ as

$$
\operatorname{Risk}_{\|\cdot\|, \Theta}[\widehat{x} \mid \mathcal{X}]=\sup _{\substack{x \in \mathcal{X} \\ \eta: \operatorname{Cov}[\eta] \in \Theta}} \mathrm{E}\|\widehat{x}(A x+\eta)-B x\|
$$

Assumptions: \mathcal{X} and the unit ball \mathcal{B}_{*} of the norm $\|\cdot\|_{*}$ conjugate to || •| are ellitopes.
For example, we can handle the case $\|\cdot\|=\|\cdot\|_{p, 1} \leq p \leq 2$. - On a simple inspection, we lose nothing when assuming that \mathcal{X} is a basic ellitope:

$$
\mathcal{X}=\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\}
$$

while

$$
\begin{gathered}
\mathcal{B}_{*}:=\left\{u:\|u\|_{*} \leq 1\right\}=\left\{u \in \mathbb{R}^{\nu}: \exists y \in \mathcal{Y}: u=M y\right\}, \\
\mathcal{Y}=\left\{y \in \mathbb{R}^{N}: \exists r \in \mathcal{R}: y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\} .
\end{gathered}
$$

Building "good" linear estimate

$$
\begin{aligned}
\mathcal{X} & =\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\} \\
\mathcal{B}_{*} & :=\{u:\|u\| \leq 1\}=\left\{u \in \mathbb{R}^{\nu}: \exists y \in \mathcal{Y}: u=M y\right\} \\
\mathcal{Y} & =\left\{y \in \mathbb{R}^{N}: \exists r \in \mathcal{R}: y^{T} R_{\ell \ell} \leq r_{\ell}, \ell \leq L\right\}
\end{aligned}
$$

Risk Analysis: Let $\widehat{x}_{H}(\omega)=H^{T} \omega$ be a candidate linear estimate. Let us upper-bound its risk:

Risk $_{\|\cdot\|, \ominus}\left[\widehat{x}_{H} \mid \mathcal{X}\right]$

$$
\begin{aligned}
& =\sup _{\substack{x \in \mathcal{X} \\
\eta: \operatorname{Cov} n] \in \Theta}} \mathrm{E}\left\{\left\|B x-H^{T}(A x+\eta)\right\|\right\} \\
& \leq \sup _{\substack{x \in \mathcal{X} \\
\eta: \operatorname{Cov}[\eta] \in \Theta}} \mathrm{E}\left\{\left\|\left[B-H^{T} A\right] x\right\|+\left\|H^{T} \eta\right\|\right\} \\
& =\underbrace{\max _{x \in \mathcal{X}}\left\|\left[B-H^{T} A\right] x\right\|}_{\Phi_{*}(H)}+\underbrace{\sup _{\eta: \operatorname{Cov}[\eta] \in \Theta} \mathrm{E}\left\{\left\|H^{T} \eta\right\|\right\}}_{\Psi_{*}(H)}
\end{aligned}
$$

- Our ideal goal would be to select H as an optimal solution to the optimization problem

$$
\min _{H}\left\{\Phi_{*}(H)+\Psi_{*}(H)\right\} ;
$$

however, functions Φ_{*} and Ψ_{*}, while convex, can be difficult to compute
\Rightarrow We indent to replace Φ_{*}, Ψ_{*} with their efficiently computable convex upper bounds.

$$
\begin{aligned}
\mathcal{X} & =\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\} \\
\mathcal{B}_{*} & :=\left\{u:\|u\|_{*} \leq 1\right\}=\left\{u \in \mathbb{R}^{\nu}: \exists y \in \mathcal{Y}: u=M y\right\} \\
\mathcal{Y} & =\left\{y \in \mathbb{R}^{N}: \exists r \in \mathcal{R}: y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\}
\end{aligned}
$$

Upper-bounding Φ_{*}. We already know how to upperbound Φ_{*} :

$$
\begin{aligned}
\Phi_{*}(H) & =\max _{x \in \mathcal{X}}\left\|\left[B-H^{T} A\right] x\right\| \\
& =\max _{[u ; x] \in \mathcal{B}_{*} \times \mathcal{X} u^{T}\left[B-H^{T} A\right] x} \\
& =\max _{[y ; x] \in \mathcal{Y} \times \mathcal{X}} y^{T} M^{T}\left[B-H^{T} A\right] x
\end{aligned}
$$

\Rightarrow [SDP relaxation]

$$
\begin{aligned}
& \Phi_{*}(H) \leq \Phi(H)=\min _{\lambda, \mu}\left\{\phi_{\mathcal{T}}(\lambda)+\phi_{\mathcal{R}}(\mu): \lambda \geq 0, \mu \geq 0,\right. \\
& {\left.\left[\left.\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2}\left[B^{T}-A H^{T}\right] M} \right\rvert\, \frac{\frac{1}{2} M^{T}\left[B-H^{T} A\right]}{\sum_{k} \lambda_{k} S_{k}}\right] \succeq 0\right\} } \\
& \leq 3 \ln (\sqrt{3}[K+L]) \Phi(H) .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{B}_{*} & :=\left\{u:\|u\|_{*} \leq 1\right\}=\left\{u \in \mathbb{R}^{\nu}: \exists y \in \mathcal{Y}: u=M y\right\} \\
\mathcal{Y} & =\left\{y \in \mathbb{R}^{N}: \exists r \in \mathcal{R}: y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\}
\end{aligned}
$$

© Upper-bounding Ψ_{*}.

Lemma: Let $Q=\operatorname{Cov}[\eta]$. Then

$$
\begin{align*}
& \mathbf{E}\left\{\left\|H^{T} \eta\right\|\right\} \leq \min _{G, \mu}\left\{\phi_{\mathcal{R}}(\mu)+\operatorname{Tr}(Q G): \mu \geq 0,\right. \tag{*}\\
& \left.\left[\begin{array}{c|c}
\sum_{\ell} \mu_{\ell} R_{\ell} & \frac{1}{2} M^{T} H^{T} \\
\hline \frac{1}{2} H M & G
\end{array}\right] \succeq 0\right\}
\end{align*}
$$

As a result,

$$
\left.\begin{array}{rl}
\Psi_{*}(H) \leq \psi(H):=\min _{G, \mu}\left\{\phi_{\mathcal{R}}(\mu)+\Gamma(G): \mu \geq 0,\right. \\
& {\left[\frac{\sum_{\ell} \mu_{\ell} R_{\ell}}{\frac{1}{2} H M^{T} H^{T}}\right]} \\
\hline \frac{1}{2} H & G
\end{array}\right],
$$

$$
\Gamma(G)=\max _{Q \in \Theta} \operatorname{Tr}(Q G) .
$$

Proof. Let (G, μ) be feasible for ($*$). By semidefinite constrains, we have $y^{T} M^{T} H^{T} \eta \leq y^{T}\left[\sum_{\ell} \mu_{\ell} R_{\ell}\right] y+\eta^{T} G \eta \forall y, \eta$ \Rightarrow

$$
\begin{aligned}
& \left\|H^{T} \eta\right\|=\max _{u \in \in} u^{T} H^{T} \eta=\max _{y, r}\left\{[M y]^{T} H^{T} \eta: r \in \mathcal{R}, y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\} \\
& \quad \leq \max _{y, r}\left\{y^{T}\left[\sum_{\ell} \mu_{\ell} R_{\ell} y y+\eta^{T} G \eta: r \in \mathcal{R}, y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\}\right. \\
& \quad \leq \max _{r \in \mathcal{R}}\left\{\sum_{\ell} \mu_{\ell} r_{\ell}\right\}+\eta^{T} G \eta=\phi_{\mathcal{R}}(\mu)+\eta^{T} G \eta .
\end{aligned}
$$

\Rightarrow [taking expectation $] \mathbf{E}\left\{\left\|H^{T} \eta\right\|\right\} \leq \phi_{\mathcal{R}}(\mu)+\operatorname{Tr}(Q G)$.

ه Illustration: Let $\|\cdot\|=\|\cdot\|_{p}$ with $1 \leq p \leq 2$ and $\Theta=\{Q\}$. The yielded by our construction upper bound $\Psi(H)$ on $\mathrm{E}\left\{\left\|H^{T} \eta\right\|_{p}\right\}, \operatorname{Cov}[\eta]=Q$, turns out to be

$$
\left\|\left[\left\|Q^{1 / 2} \operatorname{Col}_{1}[H]\right\|_{2} ; \ldots ;\left\|Q^{1 / 2} \operatorname{Col}_{\nu}[H]\right\|_{2}\right]\right\|_{p}
$$

$$
\begin{aligned}
\mathcal{X} & =\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\} \\
\mathcal{B}_{*} & :=\left\{u:\|u\|_{*} \leq 1\right\}=\left\{u \in \mathbb{R}^{\nu}: \exists y \in \mathcal{Y}: u=M y\right\} \\
\mathcal{Y} & =\left\{y \in \mathbb{R}^{N}: \exists r \in \mathcal{R}: y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\}
\end{aligned}
$$

\$ Putting things together:

Theorem [Ju\&N,'17] Consider convex optimization problem
Opt $=\min _{H}\{\Phi(H)+\Psi(H)\}$

$$
\begin{gathered}
=\min _{H, G, \lambda, \mu, \mu^{\prime}}\left\{\phi_{\mathcal{T}}(\lambda)+\phi_{\mathcal{R}}(\mu)+\phi_{\mathcal{R}}\left(\mu^{\prime}\right)+\max _{Q \in \Theta} \operatorname{Tr}(Q G):\right. \\
\lambda \geq 0, \mu \geq 0, \mu^{\prime} \geq 0 \\
\left.\left[\begin{array}{c|c}
\sum_{\ell} \mu_{\ell} R_{\ell} & \frac{1}{2} M^{T}\left[B-H^{T} A\right] \\
\hline \frac{1}{2}\left[B^{T}-A^{T} H\right] M & \sum_{k} \lambda_{k} S_{k}
\end{array}\right] \succeq 0\right\} \\
{\left[\begin{array}{c|c|}
\sum_{\ell} \mu_{\ell}^{\prime} R_{\ell} & \frac{1}{2} M^{T} H^{T} \\
\hline \frac{1}{2} H M & G
\end{array}\right] \succeq 0}
\end{gathered}
$$

The problem is efficiently solvable, and the linear estimate $\widehat{x}_{H_{*}}(\omega)=H_{*}^{T} \omega$ induced by the H-component of an optimal solution satisfies the risk bound

Risk $_{\|\cdot\|, \Theta}\left[\widehat{x}_{H_{*}} \mid \mathcal{X}\right] \leq$ Opt.

Near-Optimality in Gaussian case

$$
\begin{aligned}
\mathcal{X} & =\left\{x \in \mathbb{R}^{n}: \exists t \in \mathcal{T}: x^{T} S_{k} x \leq t_{k}, k \leq K\right\} \\
\mathcal{B}_{*} & :=\left\{u:\|u\|_{*} \leq 1\right\}=\left\{u \in \mathbb{R}^{\nu}: \exists y \in \mathcal{Y}: u=M y\right\} \\
\mathcal{Y} & =\left\{y \in \mathbb{R}^{N}: \exists r \in \mathcal{R}: y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\}
\end{aligned}
$$

\& Theorem [Ju\&N,'17] The linear estimate $\widehat{x}_{H_{*}}(\cdot)$ yielded by previous Theorem is "near minimax optimal:" for properly selected matrix $Q \in \Theta$ one has

Risk $_{\|\cdot\|, \Theta}\left[\widehat{x}_{H_{*}} \mid \mathcal{X}\right] \leq \mathrm{Opt}$

$$
\begin{equation*}
\leq O(1) \sqrt{\ln (2 L) \ln \left(\frac{2 K M_{*}^{2}}{\operatorname{RiskOpt}_{\|\cdot\|, Q}^{2}}\right)} \text { RiskOpt }{ }_{\|\cdot\|, Q}[\mathcal{X}] \tag{!}
\end{equation*}
$$

where $O(1)$ is an appropriate absolute constant,
$M_{*}^{2}=\max _{W}\left\{\mathbf{E}_{\zeta \sim \mathcal{N}(0, W)}\left\{\zeta^{T} B^{T} \zeta\right\}: W \succeq 0, \exists t \in \mathcal{T}: \operatorname{Tr}\left(W S_{k}\right) \leq t_{k}, k \leq K\right\}$
and RiskOpt ${ }_{\|\cdot\|, Q}[\mathcal{X}]$ is the minimax optimal risk of recovering $B x, x \in \mathcal{X}$, from noisy observation $\omega=A x+\eta$ with zero mean Gaussian noise $\eta \sim \mathcal{N}(0, Q)$:

RiskOpt $\|_{\|\cdot\|, Q}[\mathcal{X}]=\inf _{\widehat{x}(\cdot)} \sup _{x \in \mathcal{X}} \mathrm{E}_{\eta \sim \mathcal{N}(0, Q)}\{\|B x-\widehat{x}(A x+\eta)\|\}$,
inf being taken over all estimates $\widehat{x}(\cdot)$, linear and nonlinear alike.

Surprise: Nonoptimality factor in (!) is "nearly constant" and is independent of interplay between the geometries of \mathcal{X}, $\|\cdot\|, A$ and B - the entities primarily and heavily responsible for the minimax optimal risk.

Sketch of the proof:

A. By simple saddle point argument, the upper bound Opt on the risk of the optimal linear estimate is as if the set Θ of allowed covariance matrices of observation noise was replaced with a properly selected singleton $\{Q\} \in \Theta$.
From now on we assume that the observation noise is $\eta \sim$ $\mathcal{N}(0, Q)$.
B. The idea of the proof (originating from M.S. Pinsker (1982) who considered simple case where \mathcal{X} is ellipsoid, $\|\cdot\|=\|\cdot\|_{2}$, $A=B=I$) is to consider, instead of minimax optimal risk, the optimal Bayesian risk
$\operatorname{RiskB}[W]=\inf _{\widehat{x}(\cdot)} \mathbf{E}_{\eta \sim \mathcal{N}(0, Q), \xi \sim \mathcal{N}(0, W)}\{\|B \xi-\widehat{x}(A \xi+\eta)\|\}$,
where Gaussian random signal $\xi \sim \mathcal{N}(0, W)$ is independent of observation noise $\eta \sim \mathcal{N}(0, Q)$, and we are interested in the minimal, over all estimates, expected risk, the expectation being taken over both signal and noise.

- Similarly to the Gauss-Markov Theorem, it is easy to prove that the optimal Bayesian risk is achieved, within a moderate absolute constant factor, on a linear estimate (conditional expectation of $B \xi$ given $\omega=A \xi+\eta$). As a result,

$$
\begin{aligned}
& \underbrace{\forall W}_{\text {bias }} \begin{aligned}
\underbrace{\mathbf{E}_{\xi}}_{\xi \sim \mathcal{N}(0, W)}\left\{\left\|\left[B-H_{W}^{T} A\right] \xi\right\|\right\}
\end{aligned}+\underbrace{\mathbf{E}_{\eta \sim \mathcal{N}(0, Q)}\left\{\left\|H_{W}^{T} \eta\right\|\right\}}_{\begin{array}{c}
\text { stochastic } \\
\text { term }
\end{array}} \\
& \leq O(1) \operatorname{RiskB}[W] .
\end{aligned}
$$

$$
\begin{align*}
& \forall \underbrace{\forall W \succeq 0 \exists H_{W}:}_{\text {bias }} \begin{array}{r}
\underbrace{\mathbf{E}_{\xi \sim \mathcal{N}(0, W)}\left\{\left\|\left[B-H_{W}^{T} A\right] \xi\right\|\right\}}_{\begin{array}{c}
\text { stochastic } \\
\text { term }
\end{array}}+\underbrace{\mathbf{E}_{\eta \sim \mathcal{N}(0, Q)}\left\{\left\|H_{W}^{T} \eta\right\|\right\}} \\
\leq O(1) \text { RiskB }[W] .
\end{array}
\end{align*}
$$

C. The key component of the proof is the fact that the efficiently computable upper bound on $\mathrm{E}_{\zeta \sim \mathcal{N}(0, Z)}\left\{\left\|U^{T} \zeta\right\|\right\}$ which we used when building good linear estimate is tight:
Lemma. Let $\zeta \sim \mathcal{N}(0, Z)$ be zero mean N-dimensional Gaussian vector, U be a $N \times \nu$ matrix, and the unit ball \mathcal{B}_{*} of the norm conjugate to $\|\cdot\|$ be an ellitope:

$$
\mathcal{B}_{*}=\left\{u: \exists r \in \mathcal{R}, y: u=M y, y^{T} R_{\ell} y \leq r_{\ell}, \ell \leq L\right\} .
$$

Then the efficiently computable upper bound
$\Psi_{Z}(U)=\min _{G, \mu}\left\{\phi_{\mathcal{R}}(\mu)+\operatorname{Tr}(Z G): \mu \geq 0,\left[\begin{array}{c|c}\sum_{\ell} \mu_{\ell} R_{\ell} & \frac{1}{2} M^{T} U^{T} \\ \hline \frac{1}{2} U M & G\end{array}\right] \succeq 0\right\}$
on $\mathbf{E}_{\zeta \sim \mathcal{N}(0, Z)}\left\{\left\|U^{T} \zeta\right\|\right\}$ is tight:

$$
\Psi_{Z}(U) \leq O(1) \sqrt{\ln (2 L)} \mathbf{E}_{\zeta \sim \mathcal{N}(0, Z)}\left\{\left\|U^{T} \zeta\right\|\right\}
$$

Besides this, the bound is convex in U and concave in $Z \succeq 0$. - Lemma combines with (!) to imply that

$$
\begin{aligned}
& \forall W \succeq 0: \\
& \min _{H}\left\{\Psi_{W}\left(B^{T}-A^{T} H\right)+\Psi_{Q}(H)\right\} \leq O(1) \sqrt{\ln (2 L)} \text { RiskB }[W]
\end{aligned}
$$

$$
\begin{aligned}
& \forall W \succeq 0: \\
& \min _{H}\left\{\Psi_{W}\left(B^{T}-A^{T} H\right)+\Psi_{Q}(H)\right\} \leq O(1) \sqrt{\ln (2 L)} \text { RiskB }[W]
\end{aligned}
$$

D. For $0<\rho \leq 1$, let

$$
\begin{aligned}
\mathcal{Q}_{\rho} & =\left\{W \succeq 0: \exists t \in \mathcal{T}: \operatorname{Tr}\left(S_{k} W\right) \leq \rho t_{k}, k \leq K\right\}=\rho \mathcal{Q}_{1} \\
\operatorname{Opt}(\rho) & =\max _{W \in \mathcal{Q}_{\rho}} \min _{H}\left[\Psi_{W}\left(B^{T}-A^{T} H\right)+\Psi_{Q}(H)\right] \\
& \leq O(1) \sqrt{\ln (2 L)} \max _{W}\left\{\operatorname{RiskB}[W]: W \in \mathcal{Q}_{\rho}\right\}
\end{aligned}
$$

It turns out that
D.1. By conic duality, Opt $=$ Opt (1)
D.2. $\operatorname{Opt}(\rho) \geq \sqrt{\rho} \bigcirc p t(1), 0 \leq \rho \leq 1$
D.3. By the same argument as in the proof of tightness of the SDP upper bound on the maximum of a quadratic form over an ellitope, when $W \in \mathcal{Q}_{\rho}$ and $\xi \sim \mathcal{N}(0, W)$, the probability for ξ to take value outside of \mathcal{X} rapidly goes to 0 as $\rho \rightarrow+0$:
$\forall\left(\rho \leq 1, W \in \mathcal{Q}_{\rho}\right): \operatorname{Prob}_{\xi \sim \mathcal{N}(0, W)}\{\xi \notin \mathcal{X}\} \leq O(1) K \exp \{-O(1) / \rho\}$.
By D.3, for properly selected "moderately small" ρ one has
$\max _{W}\left\{\operatorname{RiskB}[W]: W \in \mathcal{Q}_{\rho}\right\} \leq O(1)$ RiskOpt ${ }_{\|\cdot\|, Q}[\mathcal{X}]$
\Rightarrow [by D.1-2] For "moderately small" ρ one has

$$
\text { Opt } \leq O(1) \sqrt{\ln (2 L) / \rho} \text { RiskOpt }_{\|\cdot\|, Q}[\mathcal{X}]
$$

Simple computation shows that with properly selected "moderately small" ρ, (\#) implies the announced in Theorem upper bound on Opt.

From Ellitopes to Spectratopes

Fact: All our results extend from ellitopes - sets of the form

$$
\left.\begin{array}{c}
\mathcal{Y}=\left\{y \in \mathbb{R}^{N}: \exists t \in \mathcal{T}, z: y=P z, z^{T} S_{k} z \leq t_{k}, k \leq K\right\} \\
S_{k} \succeq 0, \sum_{k} S_{k} \succ 0 \tag{E}\\
\mathcal{T} \subset \mathbb{R}_{+}^{K}: \text { monotone convex compact intersecting int } \mathbb{R}_{+}^{K}
\end{array}\right]
$$

which played the roles of signal sets, ranges of bounded noise, and the unit balls of the norms conjugate to $\|\cdot\|$, to a wider family - spectratopes

$$
\begin{gather*}
\mathcal{Y}=\left\{y \in \mathbb{R}^{N}: \exists t \in \mathcal{T}, z: y=P z, S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K\right\} \\
{\left[\begin{array}{c}
S_{k}[z]=\sum_{j} z_{j} S^{k j}, S^{k j} \in \mathbf{S}^{d_{k}}, z \neq 0 \Rightarrow \sum_{k} S_{k}^{2}[z] \neq 0 \\
\mathcal{T} \text { as in }(E)
\end{array}\right]} \tag{S}
\end{gather*}
$$

With this extension, we get, e.g., access to

- matrix boxes $\mathcal{X}=\left\{x \in \mathbb{R}^{p \times q}:\|x\|_{2,2} \leq 1\right\}$ or their symmetric versions $\mathcal{X}=\left\{x \in \mathrm{~S}_{+}^{p}:-I \preceq x \preceq I\right\}$ as signal sets
- nuclear norm $\|u\|$ nuc (sum of singular values of a matrix) as the norm quantifying recovery error

Modifications of the results when passing from ellitopes to spectratopes are as follows:
A. The "size" K of an ellitope (E) (logs of these sizes participate in our tightness factors) in the case of spectratope (S) becomes $D=\sum_{k} d_{k}$
B. SDP relaxation bound for the quantity

$$
\begin{aligned}
\text { Opt }_{*} & =\max _{y}\left\{y^{T} B y: \exists t \in \mathcal{T}, z: y=P z, S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K\right\} \\
& =\max _{z, t}\left\{z^{T} \widehat{B} z: t \in \mathcal{T}, S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K\right\}, \widehat{B}=P^{T} B P
\end{aligned}
$$

is as follows:
We associate with $S_{k}[z]=\sum_{j} z_{j} S^{k j}, S^{k j} \in \mathbf{S}^{d_{k}}$, two linear mappings:

$$
\begin{aligned}
& Q \mapsto \mathcal{S}_{k}[Q]: \mathbf{S}^{\operatorname{dim} z} \rightarrow \mathbf{S}^{d_{k}}: \\
& \quad \mathcal{S}_{k}[Q]=\sum_{i, j} \frac{1}{2} Q_{i j}\left[S^{k i} S^{k j}+S^{k j} S^{k i}\right] \\
& \wedge \mapsto \mathcal{S}_{k}^{*}[\Lambda]: \mathbf{S}^{d_{k}} \rightarrow \mathbf{S}^{\operatorname{dim} z}: \\
& \quad\left[\mathcal{S}_{k}^{*}[\Lambda]\right]_{i j}=\frac{1}{2} \operatorname{Tr}\left(\wedge\left[S^{k i} S^{k j}+S^{k j} S^{k i}\right]\right)
\end{aligned}
$$

Note:

- $S_{k}^{2}[z]=\mathcal{S}_{k}\left[z z^{T}\right]$
- the mappings \mathcal{S}_{k} and \mathcal{S}_{k}^{*} are conjugates of each other w.r.t. to the Frobenius inner product:

$$
\operatorname{Tr}\left(\mathcal{S}_{k}[Q] \wedge\right)=\operatorname{Tr}\left(Q \mathcal{S}_{k}^{*}[\wedge]\right) \forall\left(Q \in \mathbf{S}^{\operatorname{dim} z}, \wedge \in \mathbf{S}^{d_{k}}\right)
$$

Selecting $\wedge_{k} \succeq 0, k \leq K$, such that $\sum_{k} \mathcal{S}_{k}^{*}\left[\wedge_{K}\right] \succeq \widehat{B}$, for

$$
z \in \mathcal{Z}=\left\{z: \exists t \in \mathcal{T}: S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K\right\}
$$

we have $\exists t \in \mathcal{T}: S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K \Rightarrow$

$$
\begin{aligned}
& z^{T} \widehat{B} z \leq z^{T}\left[\sum_{k} \mathcal{S}_{k}^{*}\left[\wedge_{k}\right]\right] z=\sum_{k} z^{T} \mathcal{S}_{k}^{*}\left[\wedge_{k}\right] z=\sum_{k} \operatorname{Tr}\left(\mathcal{S}_{k}^{*}\left[\wedge_{k}\right]\left[z z^{T}\right]\right) \\
& =\sum_{k} \operatorname{Tr}\left(\wedge_{k} \mathcal{S}_{k}\left[z z^{T}\right]\right)=\sum_{k} \operatorname{Tr}\left(\wedge_{k} S_{k}^{2}[z]\right) \leq \sum_{k} k_{k} \operatorname{Tr}\left(\wedge_{k}\right) \leq \phi_{\mathcal{T}}(\lambda[\wedge]), \\
& \qquad \phi_{\mathcal{T}}(\lambda)=\max _{t \in \mathcal{T}} x^{T} \lambda, \lambda[\Lambda]=\left[\operatorname{Tr}\left(\wedge_{1}\right) ; \ldots ; \operatorname{Tr}\left(\wedge_{K}\right)\right] \\
& \Rightarrow \\
& \text { Opt }_{*} \leq \text { Opt }:=\min _{\wedge=\left\{\Lambda_{k}, k \leq K\right\}}\left\{\phi_{\mathcal{T}}(\lambda[\wedge]): \wedge_{k} \succeq 0, k \leq K, \widehat{B} \preceq \sum_{k} \mathcal{S}_{k}^{*}\left[\wedge_{k}\right]\right\}
\end{aligned}
$$

© Theorem [Ju\&N,'17] SDP relaxation bound

$$
\text { Opt }:=\min _{\Lambda=\left\{\Lambda_{k}, k \leq K\right\}}\left\{\phi_{\mathcal{T}}(\lambda[\wedge]): \Lambda_{k} \succeq 0, k \leq K, \widehat{B} \preceq \sum_{k} \mathcal{S}_{k}^{*}\left[\Lambda_{k}\right]\right\}
$$

on the quantity

$$
\begin{aligned}
\text { Opt }_{*} & =\max _{y}\left\{y^{T} B y: \exists t \in \mathcal{T}, z: y=P z, S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K\right\} \\
& =\max _{z, t}\left\{z^{T} \widehat{B} z: t \in \mathcal{T}, S_{k}^{2}[z] \preceq t_{k} I_{d_{k}}, k \leq K\right\}
\end{aligned}
$$

is tight:

$$
\mathrm{Opt}_{*} \leq \mathrm{Opt} \leq 2 \ln \left(2 \sum_{k} d_{k}\right) \text { Opt }_{*}
$$

Note: The role of elementary Mini-Lemma in the spectratopic case is played by the following fundamental matrix concentration result: Noncommutative Khintchine Inequality [Lust-Picard 1986, Pisier 1998, Buchholz 2001] Let $A_{i} \in \mathbf{S}^{d}, 1 \leq i \leq N$, be deterministic matrices such that

$$
\sum_{i} A_{i}^{2} \preceq I_{d}
$$

and let ζ be N-dimensional Rademacher random vector. Then for all $s \geq 0$ it holds

$$
\operatorname{Prob}\left\{\left\|\sum_{i} \zeta_{i} A_{i}\right\|_{2,2} \geq s\right\} \leq 2 d \exp \left\{-s^{2} / 2\right\} .
$$

