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What the story is about

♣ Ultimate Goal: Given noisy observation

ω = Ax+ η

• x – unknown signal known to belong to a given
signal set X ⊂ Rn

• A – given m× n sensing matrix
• η – observation noise,

we want to recover linear image Bx of the signal.
• B – given ν × n matrix.

♠ Models of noise:
• bounded noise: all we know is that η ∈ H← given compact

set in Rm
• random noise: η is random with covariance matrix

Cov[η] := E{ηηT} ∈ Θ← given compact subset of the
cone Sm+ of positive semidefinite m×m matrices.

♠ An estimate is (any) function x̂(ω) : Rm → Rν. We quan-
tify performance of an estimate by its risk:

bounded noise:
Risk‖·‖,H[x̂|X ] = sup

x∈X
η∈H

‖x̂(Ax+ η)−Bx‖

random noise:
Risk‖·‖,Θ[x̂|X ] = sup

x∈X
η:Cov[η]∈Θ

E {‖x̂(Ax+ η)−Bx‖}

• ‖ · ‖ – given norm on Rν
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ω = Ax+ η ??⇒?? x̂(ω) ≈ Bx

♣We are about to demonstrate that
• Under appropriate assumptions on X , ‖ · ‖,H one can

build, in a computationally efficient fashion, a “presumably
good” linear estimate

x̂H(ω) = HTω

• The resulting estimate is nearly optimal, in certain precise
sense, among all estimates, linear and nonlinear alike.
Note: Achieving these goals must impose some restrictions
on the “geometry” of the data X , ‖ · ‖,H,Θ. In what follows
we assume that
• Θ, if relevant, is a convex compact subset of the interior

of Sm+
• X and the unit ball B∗ = {u : ‖u‖∗ ≤ 1} of the norm

conjugate to ‖ · ‖:
‖u‖∗ = max{uTv : ‖v‖ ≤ 1},

same as H, if relevant, are ellitopes or spectratopes.
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Why linear estimates?

♠ As it was announced, a “nearly optimal” linear estimate can
be built in a computationally efficient fashion.
♠ In contrast,
• Exactly minimax optimal estimate is unknown even in the

simplest case when the observation is

ω = x+ η

with η ∼ N (0, σ2) and x ∈ X = [−1,1]

• “Standard” Maximum Likelihood estimate can be disas-
trously bad even in the simple case

ω = x+ η,

η ∼ N (0, σ2In), X = {x ∈ Rn : ‖x‖2 ≤ 1}, Bx = x1

In this case, natural implementation of ML estimate is

Build signal x̃ most likely yielding the observation:

ω 7→ x̃ = argmin
‖u‖2≤1

‖ω − u‖2

and take x̃1 as the estimate of Bx = x1.

For σ small and fixed and n large, with overwhelming proba-
bility x̃ = ω/‖ω‖2 ≈ ω/

√
nσ2, implying that |x̃1| ≤ O(1)

σ
√
n

, and
the risk of the ML estimate is O(1), as compared to the mini-
max optimal risk O(σ).
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Ellitopes and Spectratopes

♠ Basic ellitope in RN is a bounded set Z given by repre-
sentation

Z = {z ∈ RN : ∃t ∈ T : zTSkz ≤ tk,1 ≤ k ≤ K}
where
• Sk � 0, k ≤ K
• T ⊂ RK+ is convex compact set which contains a positive

vector and is monotone: 0 ≤ t′ ≤ t ∈ T implies that t′ ∈ T .

♠ Examples:
A. Bounded intersection of K ellipsoids/elliptic cylinders cen-
tered at the origin (T = [0,1]K)
B. ‖ · ‖p-norm ball, 2 ≤ p ≤ ∞:

{z ∈ RN , ‖z‖p ≤ 1} = {z ∈ RN : ∃t ∈ T : zTSkz ≡ z2
k ≤ tk, k ≤ K := N},

T = {t ∈ RN+ : ‖t‖p/2 ≤ 1}

♠ Ellitope X is a set represented as linear image of a basic
ellitope Z:

X = {x : ∃z ∈ Z : x = Pz}
Z = {z ∈ RN : ∃t ∈ T : zTSkz ≤ tk,1 ≤ k ≤ K}

4



♠ Basic spectratope in RN is a bounded set Z given by rep-
resentation

Z = {z ∈ RN : ∃t ∈ T : S2
k [z] � tkIdk,1 ≤ k ≤ K}

where
• Sk[z] =

∑N
j=1 zjS

kj is a dk × dk symmetric matrix
linearly depending on z

• T ⊂ RK+ is as in the definition of ellitope.

♠ Example: Matrix box {z ∈ Rp×q : ‖z‖2,2 ≤ 1}
(‖ · ‖2,2 – spectral norm):

{z ∈ Rp×q : ‖z‖2,2 ≤ 1}

= {z ∈ Rp×q : ∃t ∈ [0,1] :

[
z

zT

]2

� tIp+q}.

♠ Spectratope X is a set represented as linear image of a
basic spectratope Z:

X = {x : ∃z ∈ Z : x = Pz}
Z = {z ∈ RN : ∃t ∈ T : S2

k [z] � tkIdk,1 ≤ k ≤ K}
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♠ Fact: Every ellitope is a spectratope. Indeed, if Sk � 0,
then Sk =

∑rk
j=1 fkjf

T
kj ⇒

{z : ∃t ∈ T : zTSkz ≤ tk, k ≤ K}
= {z : ∃t ∈ T + : S2

kj[z] := [fTkjz]2 � tkjI1, j ≤ rk, k ≤ K},
T + = {{tkj ≥ 0} : ∃t ∈ T :

∑rk
j=1 tkj ≤ tk, k ≤ K}

♠ Fact: Ellitopes/Spectratopes admit fully algorithmic calcu-
lus: nearly all operations preserving “built-in” properties of
these sets – convexity, compactness and symmetry w.r.t. the
origin, like taking
• finite intersections,
• direct products,
• arithmetic sums,
• linear images,
• inverse images under linear embeddings,

as applied to ellitopes/spectratopes, result in the sets of
the same type, with ellitopic/spectratopic representation of
the result readily given by respective representations of the
operands.

♠ Note: In the main body of the talk, we focus on ellitopes,
outlining the extensions to spectratopes at the end.
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Semidefinite Relaxation
on Ellitopes

♣ Standard Semidefinite Relaxation is aimed at computa-
tionally efficient upper-bounding the maximum of quadratic
form over a set Y given by a bunch of quadratic constraints.
♠ In the case of problem of the form

Opt∗ = max
y

{
yTBy : yTAky ≤ ak, k ≤ K

}
SDP relaxation works as follows:
•We observe that whenever λ ∈ RK+, we have for feasible y

yT [
∑
k

λkAk]y ≤
∑
k

λkak

⇒Whenever λ ≥ 0 is such that B �
∑
k λkAk, we have

yTBy ≤
∑
k

λkak

for all feasible y⇒

[Opt∗ ≤] Opt = min
λ

∑
k

akλk : λ ≥ 0, B �
∑
k

λkAk

.
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Opt∗ = max
y∈Y

yTBy

♠When Y is an ellitope:

Y = {y : ∃t ∈ T , z : y = Pz, zTSkz ≤ tk, k ≤ K}

SDP relaxation can be implemented as follows:
• Let λ ∈ RK+ be such that B̂ := PTBP �

∑
k λkSk.

Whenever y ∈ Y, y = Pz with zTSkz ≤ tk, k ≤ K, for some
t ∈ T , whence

yTBy = zT B̂z ≤ zT [
∑
k λkSk] z ≤

∑
k λktk≤ φT (λ),

φT (λ) := maxt∈T t
Tλ

⇒Opt∗ :=≤ Opt = minλ
{
φT (λ) : λ ≥ 0, B̂ �

∑
k λkSk

}
.
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Opt∗ = maxy
{
yTBy : ∃t ∈ T , z : y = Pz, zTSkz ≤ tk, k ≤ K

}
Opt = minλ

{
φT (λ) : λ ≥ 0, B̂ �

∑
k λkSk

}
♠ Theorem [Ju&N,’16] In the ellitopic case, SDP relaxation is
reasonably tight:

Opt∗ ≤ Opt ≤ 3 ln(
√

3K)Opt∗
Proof. Left inequality was already verified. Let

T = {[t; τ ] : τ > 0, t/τ ∈ T } ∪ {0}
be the conic hull of T . It is easily seen that T is a regular
(closed, convex, pointed and with a nonempty interior) cone
with the dual cone

T∗ := {[g; s] : [g; s]T [t; τ ] ≥ 0 ∀[t; τ ] ∈ T} = {[g; s] : s ≥ φT (−g)}

⇒ Opt is the optimal value in the (strictly feasible and solv-
able) conic problem:

Opt = min
λ,s

{
s : λ ≥ 0, B̂ �

∑
k

λkSk, [−λ; s] ∈ T∗
}

(∗)

⇒ Opt is the optimal value in the solvable dual to (∗) prob-
lem:

Opt = max
Z,[t;τ ],µ

Tr(B̂Z) :
Z � 0, µ ≥ 0, [t; τ ] ∈ T∑

k[Tr(SkZ)− tk + µk]λk + τs = s
∀(λ, s)


= max

Z,t

{
Tr(B̂Z) : t ∈ T , Z � 0,Tr(SkZ) ≤ tk, k ≤ K

}
= Tr(B̂Z∗) [Z∗ � 0, ∃t∗ ∈ T : Tr(SkZ∗) ≤ t∗k, k ≤ K]
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Opt = Tr(B̂Z∗) [Z∗ � 0, ∃t∗ ∈ T : Tr(SkZ∗) ≤ t∗k, k ≤ K]

• Let

B̃ := Z
1/2
∗ B̂Z

1/2
∗ = UDiag{µ}UT [U is orthogonal]

and let S̃k = UTZ
1/2
∗ SkZ

1/2
∗ U , so that

0 � S̃k, Tr(S̃k)= Tr(Z
1/2
∗ SkZ

1/2
∗ ) = Tr(SkZ∗) ≤ t∗k.

Let ζ be Rademacher random vector (independent entries tak-
ing values ±1 with probability 1/2), and let ξ = Z

1/2
∗ Uζ. We

have
E{ξξT} = E{Z1/2

∗ UζζTUTZ
1/2
∗ }= Z∗

ξT B̂ξ = ζTUTZ
1/2
∗ B̂Z

1/2
∗ Uζ = ζTUT B̃Uζ

= ζTDiag{µ}ζ =
∑

i µi = Tr(B̃) = TrB̂Z∗)= Opt

ξTSkξ = ζTUTZ
1/2
∗ SkZ

1/2
∗ Uζ= ζT S̃kζ

•When k is such that t∗k = 0, we have S̃k = 0⇒ ξTSkξ ≡ 0
•When k is such that t∗k > 0, we have Tr(S̃k/t

∗
k) ≤ 1⇒[

E

{
exp

{
ξTSkξ

3t∗k

}}
=

]
E

{
exp

{
ζT S̃kζ

3t∗k

}}
≤
√

3

due to
Mini-Lemma: Let Q be positive semidefinite N × N matrix
with trace ≤ 1 and ζ be N -dimensional Rademacher random
vector. Then

E
{

exp
{
ζTQζ/3

}}
≤
√

3.
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Opt := max
Z,t

{
Tr(B̂Z) : t ∈ T , Z � 0,Tr(SkZ) ≤ tk, k ≤ K

}
≥ Opt∗ := maxz

{
zT B̂z : ∃t ∈ T : zTSkz ≤ tk, k ≤ K

}
ξT B̂ξ ≡ Opt & ξTSkξ ≡ 0 if t∗k = 0 & E{exp{

ξTSkξ

3t∗k
}} ≤

√
3 if t∗k > 0︸ ︷︷ ︸

(∗)

⇒ [by (∗)] Prob{∃k : ξTSkξ > 3 ln(
√

3K)t∗k} < 1

⇒ ∃ξ : ξ
T
Skξ ≤ 3 ln(

√
3K)t∗k, k ≤ K & ξ

T
B̂ξ = Opt

⇒ setting z = ξ/
√

3 ln(
√

3K), we get
zTSkz ≤ t∗k, k ≤ K & zT B̂z = Opt/[3 ln(

√
3K)]

⇒Opt ≤ 3 ln(
√

3K)Opt∗ �
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Proof of Mini-Lemma: Let Q =
∑

i σifif
T
i be the eigenvalue decomposi-

tion of Q, so that fTi fi = 1, σi ≥ 0, and
∑

i σi ≤ 1. The function

f(σ1, ..., σN) = E
{

e
1

3

∑
i
σiζTfif Ti ζ

}
is convex on the simplex {σ ≥ 0,

∑
i σi ≤ 1} and thus attains it maximum

over the simplex at a vertex, implying that for some f = fi, fTf = 1, it
holds

E{e
1

3
ζTQζ} ≤ E{e

1

3
(f Tζ)2}.

Let ξ ∼ N (0,1) be independent of ζ. We have

Eζ

{
exp{1

3
(fTi ζ)2}

}
= Eζ

{
Eξ

{
exp{[

√
2/3fTζ]ξ}

}}
= Eξ

{
Eζ

{
exp{[

√
2/3fTζ]ξ}

}}
= Eξ

{
N∏
j=1

Eζ

{
exp{

√
2/3ξfjζj}

}}

= Eξ

{
N∏
j=1

cosh(
√

2/3ξfj)

}
≤ Eξ

{
N∏
j=1

exp{ξ2f2
j /3}

}
= Eξ

{
exp{ξ2/3}

}
=
√

3
�
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What actually happened?

Opt∗ = maxz,t
{
zT B̂z : t ∈ T , zTSkz ≤ tk, k ≤ K

}
(∗)

♣ The dual form

Opt = max
Z,t

{
Tr(B̂Z) : Z � 0, t ∈ T ,Tr(SkZ) ≤ tk, k ≤ K

}
(D)

of SDP relaxation

Opt = min
λ

{
φT (λ) : λ ≥ 0, B̂ �

∑
k
λkSk

}
(P )

of (∗) can be interpreted as follows:
♣We pass from deterministic feasible solutions (z, t) to (∗) to
random solutions (z̃, t̃) satisfying the constraints at average:

E{t̃} ∈ T , E{z̃TSkz̃} ≤ E{t̃k}, k ≤ K

and maximize over these random solutions the expected value
E{z̃T B̂z̃} of the objective.

Note: What matters in the latter problem, is the expectation t
of t̃ and the covariance matrix Z of z̃, and in terms of t, Z, the
problem is exactly (D).
• The advantage of “average” interpretation of (D) is that
given an optimal solution to (D), we can build (in many ways!)
associated random solution z̃, t̃ and then “correct” realizations
of z̃, t̃ to make the corrections feasible for (∗). With luck, we
can control the price of the correction in terms of the actual
objective, thus quantifying the “gap” between Opt and Opt∗.
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Opt∗ = maxz,t
{
zT B̂z : t ∈ T , zTSkz ≤ tk, k ≤ K

}
Opt = maxZ,t

{
Tr(B̂Z) : Z � 0, t ∈ T ,Tr(SkZ) ≤ tk, k ≤ K

}
≥ Opt∗

♠ In our analysis of the gap between Opt∗ and Opt,
• the random solution was ξ, t∗, the objective at this solution
was identically equal to Opt, and we ensured that

E{ξTSkξ} ≤ t∗k, k ≤ K

• correction was of the form

ξ 7→ z =

[
min
k:t∗k>0

t∗k
ξTSkξ

]1/2

ξ ⇒ zT B̂z =

[
min
k:t∗k>0

t∗k
ξTSkξ

]
Opt

• we show that the random “price of correction” min
k:t∗k>0

t∗k
ξTSkξ

with positive probability is ≥ 1
3 ln(

√
3K)

⇒Opt ≤ 3 ln(
√

3K)Opt∗

♠ Fact: All known to us approximation results for SDP relax-
ations utilize the above strategy “find good on average random
solution and correct its realizations.”
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Executive Summary on Conic Programming

♠ Conic program is optimization program of the form

Opt(P ) = min
x

{
cTx : Aix− bi ∈ Ki, i ≤ m,Px = p

}
(P )

where Ki are regular (convex, closed, pointed, and with a
nonempty interior) cones in Rni.
♠ Dual to (P ) program stems from the desire to lower-bound
Opt(P ) and is as follows:
• We equip the conic constraints Aix − bi ∈ Ki with La-

grange multipliers λi belonging to the cones

K∗i = {λ : λTy ≥ 0∀y ∈ Ki}
dual to Ki, and equip the equality constraints Px = p ∈ Rk
with Lagrange multiplier µ ∈ Rk.
• Summing up the constraints in (P ) with weights λi, µ, we

get aggregated constraint[∑
i
ATi λi + PTµ

]T
x ≥

∑
i

bTi λi + pTµ (∗)

which is a consequence of the constraints in (P )
⇒ Whenever the left hand side in the aggregated constraint
identically in x is cTx, the right hand side in (∗) is a lower
bound on Opt(P ). The dual problem

Opt(D) = max
λi,µ

∑
i

bTi λi + pTµ :
λi ∈ K∗i , i ≤ m∑
iA

T
i λi + PTµ = c


is to find the best possible bound of this type.
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Opt(P ) = min
x

{
cTx : Aix− bi ∈ Ki, Px = p

}
(P )

Opt(D) = max
λ,µ

{∑
i b
T
i λi + pTµ :

λi ∈ K∗i , i ≤ m∑
iA

T
i λi + P Tµ = e

}
(D)

♠ A conic problem is called strictly feasible, if it admits a feasi-
ble solution for which the left hand sides of all conic constraints
belong to the interiors of the right hand side cones.

♠ Conic Duality Theorem:
[symmetry] Conic duality is symmetric: the dual problem
(D) is a conic one, and its dual is (equivalent to) the primal
problem (P ).
[weak duality] One always have Opt(D) ≤ Opt(P )

[strong duality] Let one of the problems (P ), (D) be strictly
feasible and bounded. Then the other problem is solvable, and
optimal values are equal to each other: Opt(D) = Opt(P ).

16



Near-optimality of linear estimates:
Bounded noise

♣ Situation: Given observation ω = Ax+ η of unknown sig-
nal x known to belong to a given signal set X , we want to
recover Bx. All we know about the noise is η ∈ H, with a
known and bounded set H.
We define the risk of an estimate ω 7→ x̂(ω) as

Risk‖·‖,H[x̂|X ] = sup
x∈X ,η∈H

‖Bx− x̂(Ax+ η)‖

♠ Assumptions: X ,H are ellitopes, and the unit ball

B∗ = {u : ‖u‖∗ ≤ 1}
of the norm conjugate to ‖ · ‖ is a basic ellitope, as is the case
when

‖ · ‖ = ‖ · ‖p, 1 ≤ p ≤ 2.
♠ Immediate observation: The situation in question reduces
to the one with no noise.
Indeed, we can think that the signal underlying observation is
[x; η] rather than x. In terms of this signal,
• the observation is Ā[x; η] = Ax+ η,
• the quantity to be recovered is B̄[x; η] = Bx,
• the signal [x; η] is known to belong to Y := X × H, which
is an ellitope,
• the performance of a candidate estimate is quantified by the
worst-case risk

Risk‖·‖[x̂|Y] = sup
y=[x;η]∈Y

‖B̄y − x̂(Āy)‖ [= Risk‖·‖,H[x̂|X ]]
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⇒We assume from now on that there is no observation noise:

ω = Ax, x ∈ X ,

X is an ellitope, and the risk is defined as

Risk‖·‖[x̂|X ] = sup
x∈X
‖Bx− x̂(Ax)‖.

We further lose nothing when assuming that X is a basic elli-
tope:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}.

♣ Building linear estimate. To get the minimum risk linear
estimate x̂H(ω) = HTω, we need to solve the optimization
problem

Opt∗ = min
H

{
Φ∗(H) := max

x∈X
‖Bx−HTAx‖

}
(!)

Difficulty: While Φ∗(H) is convex (as the supremum of a
family of convex functions of H), this function could be difficult
to compute
⇒ in general, (!) is intractable.
Nearly the only known cases where X is an ellitope and (!) is
tractable are those of
• ellipsoid X and Euclidean norm ‖ · ‖
• ‖ · ‖ = ‖ · ‖∞.
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Opt∗ = minH
{

Φ∗(H) := maxx∈X ‖Bx−HTAx‖
}

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃r ∈ R : uTR`u ≤ r`, ` ≤ L}

♠ Observation: Φ∗(H) is the maximum of a quadratic form
over an ellitope:
‖v‖ = maxu∈B∗ u

Tv⇒

Φ∗(H) = max[u;x]∈B∗×X u
T [B −HTA]x

= max[u;x]∈B∗×X [u;x]TW (H)[u;x],

W (H) =
[

1
2
[B −HTA]

1
2
[BT −ATH]

]
⇒ by SDP relaxation, Φ∗(H) admits an efficiently computable
convex upper bound

Φ(H) = minλ,µ

φT (λ) + φR(µ) :
λ ≥ 0, µ ≥ 0[ ∑

` µ`R`
1
2
[B −HTA]

1
2
[BT −ATH]

∑
k λkSk

] [
φT (λ) = maxt∈T tTλ, φR(µ) = maxr∈R rTµ

]
⇒ We can approximate intractable problem of building the
best linear estimate with efficiently solvable problem

Opt = min
λ,µ,H

φT (λ) + φR(µ) :
λ ≥ 0, µ ≥ 0[ ∑

` µ`R`
1
2
[B −HTA]

1
2
[BT −ATH]

∑
k λkSk

] 
The H-component H∗ of optimal solution to this problem
yields linear estimate x̂H∗(ω) = HT

∗ ω satisfying

Risk‖·‖[x̂H∗|X ] ≤ Opt [≤ 3 ln(
√

3[K + L])Opt∗]
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♣ Theorem [Ju&N,’17] The linear estimate x̂H∗ yielded by (ef-
ficiently computable) optimal solutionH∗ to the above problem
is near-optimal:

Risk‖·‖[x̂H∗|X ] ≤ Opt ≤ 3 ln(
√

3[K + L])Risk∗‖·‖[X ],

where

Risk∗‖·‖[X ] = inf
x̂(·)

Risk‖·‖[x̂|X ],

inf being taken over all estimates, linear and nonlinear alike,
is the minimax optimal risk.
♠ Sketch of the proof:
A. Consider the quantity

R = max
x
{‖Bx‖ : Ax = 0, x ∈ X} .

Claim: R is a lower bound on minimax optimal risk Risk∗‖·‖[X ].
Indeed,
• ∃x̄ ∈ X : Ax̄ = 0 & ‖Bx̄‖ = R

⇒ observation ω = 0 may come from signals x̄± := ±x̄ ∈ X
⇒ minimax risk cannot be less that R = 1

2‖Bx̄+ −Bx̄−‖.
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B. Let E be a matrix with trivial kernel and columns spanning
KerA. We have

R = max
y
{‖BEy‖ : y ∈ Y}, Y = {y : Ey ∈ X},

⇒R = maxu∈B∗,y∈Y u
T [BE]y is the maximum of a quadratic

form over the ellitope B∗ × Y
⇒ R can be tightly upper-bounded by semidefinite relaxation.
On a closest inspection (heavily utilizing conic duality), this
bound turns out to be ≥ Opt, where Opt is the SDP relax-
ation bound on the risk of x̂H∗
⇒Opt tightly upper-bounds R and thus – the minimal optimal
risk.

♠ Note: Theorem is nice but not too important, since we can
easily build a nearly optimal efficiently computable nonlinear
estimate, namely, as follows:

Given observation ω = Ax with unknown x ∈ X , we
solve convex feasibility problem

find x̄ ∈ X : Ax̄ = ω

and estimate Bx by Bx̄, where x̄ is (any) solution to
the feasibility problem.

This estimate is efficiently computable under much weaker as-
sumptions than those underlying Theorem, and always is min-
imax optimal within factor 2.
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Near-optimality of linear estimates:
Random noise

♣ Situation: Given observation ω = Ax+ η of unknown sig-
nal x known to belong to a given signal set X , we want to
recover Bx. All we know about the noise is that η is random
with covariance matrix

Cov[η] = E{ηηT}

belonging to a given convex compact subset Θ of the interior
of positive semidefinite cone.
We define the risk of an estimate ω 7→ x̂(ω) as

Risk‖·‖,Θ[x̂|X ] = sup
x∈X

η:Cov[η]∈Θ

E‖x̂(Ax+ η)−Bx‖

♠ Assumptions: X and the unit ball B∗ of the norm ‖ · ‖∗
conjugate to ‖ · ‖ are ellitopes.
For example, we can handle the case ‖·‖ = ‖·‖p, 1 ≤ p ≤ 2.
• On a simple inspection, we lose nothing when assuming that
X is a basic ellitope:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}

while

B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃y ∈ Y : u = My},
Y = {y ∈ RN : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L}.

22



Building “good” linear estimate

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃y ∈ Y : u = My}
Y = {y ∈ RN : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L}

♠ Risk Analysis: Let x̂H(ω) = HTω be a candidate linear
estimate. Let us upper-bound its risk:

Risk‖·‖,Θ[x̂H |X ]

= sup
x∈X

η:Cov[η]∈Θ

E
{
‖Bx−HT (Ax+ η)‖

}
≤ sup

x∈X
η:Cov[η]∈Θ

E
{
‖[B −HTA]x‖+ ‖HTη‖

}
= max

x∈X
‖[B −HTA]x‖︸ ︷︷ ︸

Φ∗(H)

+ sup
η:Cov[η]∈Θ

E
{
‖HTη‖

}
︸ ︷︷ ︸

Ψ∗(H)

• Our ideal goal would be to select H as an optimal solution
to the optimization problem

min
H
{Φ∗(H) + Ψ∗(H)} ;

however, functions Φ∗ and Ψ∗, while convex, can be difficult
to compute
⇒ We indent to replace Φ∗, Ψ∗ with their efficiently com-
putable convex upper bounds.
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃y ∈ Y : u = My},
Y = {y ∈ RN : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L}

♠ Upper-bounding Φ∗. We already know how to upper-
bound Φ∗:

Φ∗(H) = maxx∈X ‖[B −HTA]x‖
= max[u;x]∈B∗×X u

T [B −HTA]x

= max[y;x]∈Y×X y
TMT [B −HTA]x

⇒ [SDP relaxation]

Φ∗(H) ≤ Φ(H) = min
λ,µ

{
φT (λ) + φR(µ) : λ ≥ 0, µ ≥ 0,[ ∑
` µ`R`

1
2
MT [B −HTA]

1
2
[BT −AHT ]M

∑
k λkSk

]
� 0

}
≤ 3 ln(

√
3[K + L])Φ(H).
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B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃y ∈ Y : u = My},
Y = {y ∈ RN : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L}

♠ Upper-bounding Ψ∗.
Lemma: Let Q = Cov[η]. Then

E
{
‖HTη‖

}
≤ min

G,µ

{
φR(µ) + Tr(QG) : µ ≥ 0,[ ∑

` µ`R`
1
2
MTHT

1
2
HM G

]
� 0

} (∗)

As a result,

Ψ∗(H) ≤ Ψ(H) := min
G,µ

{
φR(µ) + Γ(G) : µ ≥ 0,[ ∑

` µ`R`
1
2
MTHT

1
2
HM G

]
� 0

}
,

Γ(G) = max
Q∈Θ

Tr(QG).

Proof. Let (G,µ) be feasible for (∗). By semidefinite con-
straint, we have yTMTHTη ≤ yT [

∑
` µ`R`]y + ηTGη ∀y, η

⇒
‖HTη‖ = max

u∈B∗
uTHTη = max

y,r

{
[My]THTη : r ∈ R, yTR`y ≤ r`, ` ≤ L

}
≤ max

y,r

{
yT [
∑

` µ`R`]y + ηTGη : r ∈ R, yTR`y ≤ r`, ` ≤ L
}

≤ max
r∈R

{∑
` µ`r`

}
+ ηTGη = φR(µ) + ηTGη.

⇒ [taking expectation] E{‖HTη‖} ≤ φR(µ) + Tr(QG). �
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♠ Illustration: Let ‖·‖ = ‖·‖p with 1 ≤ p ≤ 2 and Θ = {Q}.
The yielded by our construction upper bound Ψ(H) on
E{‖HTη‖p}, Cov[η] = Q, turns out to be∥∥∥[‖Q1/2Col1[H]‖2; ...; ‖Q1/2Colν[H]‖2

]∥∥∥
p
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃y ∈ Y : u = My},
Y = {y ∈ RN : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L}

♠ Putting things together:
Theorem [Ju&N,’17] Consider convex optimization problem

Opt = min
H
{Φ(H) + Ψ(H)}

= min
H,G,λ,µ,µ′

{
φT (λ) + φR(µ) + φR(µ′) + max

Q∈Θ
Tr(QG) :

λ ≥ 0, µ ≥ 0, µ′ ≥ 0 ∑̀
µ`R`

1
2
MT [B −HTA]

1
2
[BT −ATH]M

∑
k

λkSk

 � 0[ ∑̀
µ′`R`

1
2
MTHT

1
2
HM G

]
� 0

}

The problem is efficiently solvable, and the linear estimate
x̂H∗(ω) = HT

∗ ω induced by the H-component of an optimal
solution satisfies the risk bound

Risk‖·‖,Θ[x̂H∗|X ] ≤ Opt.
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Near-Optimality in Gaussian case
X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ := {u : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃y ∈ Y : u = My},
Y = {y ∈ RN : ∃r ∈ R : yTR`y ≤ r`, ` ≤ L}

♣ Theorem [Ju&N,’17] The linear estimate x̂H∗(·) yielded by
previous Theorem is “near minimax optimal:” for properly se-
lected matrix Q ∈ Θ one has

Risk‖·‖,Θ[x̂H∗|X ] ≤ Opt

≤ O(1)

√√√√ln(2L) ln

(
2KM2

∗
RiskOpt2

‖·‖,Q[X ]

)
RiskOpt‖·‖,Q[X ],

(!)
where O(1) is an appropriate absolute constant,

M2
∗ = max

W

{
Eζ∼N (0,W ){ζTBTζ} : W � 0, ∃t ∈ T : Tr(WSk) ≤ tk, k ≤ K

}
and RiskOpt‖·‖,Q[X ] is the minimax optimal risk of recover-
ing Bx, x ∈ X , from noisy observation ω = Ax+ η with zero
mean Gaussian noise η ∼ N (0, Q):

RiskOpt‖·‖,Q[X ] = inf
x̂(·)

sup
x∈X

Eη∼N (0,Q) {‖Bx− x̂(Ax+ η)‖},

inf being taken over all estimates x̂(·), linear and nonlinear
alike.
♠ Surprise: Nonoptimality factor in (!) is “nearly constant”
and is independent of interplay between the geometries of X ,
‖ · ‖, A and B – the entities primarily and heavily responsible
for the minimax optimal risk.
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♠ Sketch of the proof:
A. By simple saddle point argument, the upper bound Opt on
the risk of the optimal linear estimate is as if the set Θ of al-
lowed covariance matrices of observation noise was replaced
with a properly selected singleton {Q} ∈ Θ.
From now on we assume that the observation noise is η ∼
N (0, Q).

B. The idea of the proof (originating from M.S. Pinsker (1982)
who considered simple case where X is ellipsoid, ‖·‖ = ‖·‖2,
A = B = I) is to consider, instead of minimax optimal risk,
the optimal Bayesian risk

RiskB[W ] = inf
x̂(·)

Eη∼N (0,Q),ξ∼N (0,W ) {‖Bξ − x̂(Aξ + η)‖} ,

where Gaussian random signal ξ ∼ N (0,W ) is independent
of observation noise η ∼ N (0, Q), and we are interested in
the minimal, over all estimates, expected risk, the expectation
being taken over both signal and noise.
• Similarly to the Gauss-Markov Theorem, it is easy to prove
that the optimal Bayesian risk is achieved, within a moderate
absolute constant factor, on a linear estimate (conditional ex-
pectation of Bξ given ω = Aξ + η). As a result,

∀W � 0 ∃HW :
Eξ∼N (0,W )

{
‖[B −HT

WA]ξ‖
}︸ ︷︷ ︸

bias

+Eη∼N (0,Q)

{
‖HT

Wη‖
}︸ ︷︷ ︸

stochastic
term

≤ O(1)RiskB[W ].
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∀W � 0∃HW :
Eξ∼N (0,W )

{
‖[B −HT

WA]ξ‖
}︸ ︷︷ ︸

bias

+Eη∼N (0,Q)

{
‖HT

Wη‖
}︸ ︷︷ ︸

stochastic
term

≤ O(1)RiskB[W ].

(!)

C. The key component of the proof is the fact that the efficiently
computable upper bound on Eζ∼N (0,Z)

{
‖UT ζ‖

}
which we

used when building good linear estimate is tight:
Lemma. Let ζ ∼ N (0, Z) be zero mean N -dimensional
Gaussian vector, U be a N × ν matrix, and the unit ball B∗
of the norm conjugate to ‖ · ‖ be an ellitope:

B∗ = {u : ∃r ∈ R, y : u = My, yTR`y ≤ r`, ` ≤ L}.
Then the efficiently computable upper bound

ΨZ(U) = min
G,µ

{
φR(µ) + Tr(ZG) : µ ≥ 0,

[ ∑
` µ`R`

1
2
MTUT

1
2
UM G

]
� 0

}
on Eζ∼N (0,Z)

{
‖UT ζ‖

}
is tight:

ΨZ(U) ≤ O(1)
√

ln(2L)Eζ∼N (0,Z)

{
‖UT ζ‖

}
.

Besides this, the bound is convex in U and concave in Z � 0.
• Lemma combines with (!) to imply that

∀W � 0 :
min
H

{
ΨW(BT −ATH) + ΨQ(H)

}
≤ O(1)

√
ln(2L)RiskB[W ]
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∀W � 0 :
min
H

{
ΨW(BT −ATH) + ΨQ(H)

}
≤ O(1)

√
ln(2L)RiskB[W ]

D. For 0 < ρ ≤ 1, let

Qρ = {W � 0 : ∃t ∈ T : Tr(SkW ) ≤ ρtk, k ≤ K} = ρQ1,
Opt(ρ) = max

W∈Qρ

min
H

[
ΨW(BT −ATH) + ΨQ(H)

]
≤ O(1)

√
ln(2L) max

W
{RiskB[W ] : W ∈ Qρ}

It turns out that
D.1. By conic duality, Opt = Opt(1)
D.2. Opt(ρ) ≥ √ρOpt(1), 0 ≤ ρ ≤ 1
D.3. By the same argument as in the proof of tightness of

the SDP upper bound on the maximum of a quadratic form
over an ellitope, when W ∈ Qρ and ξ ∼ N (0,W ), the prob-
ability for ξ to take value outside of X rapidly goes to 0 as
ρ→ +0:

∀(ρ ≤ 1,W ∈ Qρ) : Probξ∼N (0,W ) {ξ 6∈ X} ≤ O(1)K exp{−O(1)/ρ}.

By D.3, for properly selected “moderately small” ρ one has

maxW {RiskB[W ] : W ∈ Qρ} ≤ O(1)RiskOpt‖·‖,Q[X ]

⇒ [by D.1-2] For “moderately small” ρ one has

Opt ≤ O(1)
√

ln(2L)/ρRiskOpt‖·‖,Q[X ]. (#)

Simple computation shows that with properly selected “moder-
ately small” ρ, (#) implies the announced in Theorem upper
bound on Opt.

31



From Ellitopes to Spectratopes

♠ Fact: All our results extend from ellitopes – sets of the form

Y = {y ∈ RN : ∃t ∈ T , z : y = Pz, zTSkz ≤ tk, k ≤ K}[
Sk � 0,

∑
k Sk � 0

T ⊂ RK+ : monotone convex compact intersecting intRK+

]
(E)

which played the roles of signal sets, ranges of bounded noise, and the
unit balls of the norms conjugate to ‖ · ‖, to a wider family – spectratopes

Y = {y ∈ RN : ∃t ∈ T , z : y = Pz, S2
k [z] � tkIdk, k ≤ K}[

Sk[z] =
∑

j zjS
kj, Skj ∈ Sdk, z 6= 0⇒

∑
k S

2
k [z] 6= 0

T as in (E)

]
(S)

With this extension, we get, e.g., access to
• matrix boxes X = {x ∈ Rp×q : ‖x‖2,2 ≤ 1} or their symmetric ver-

sions X = {x ∈ Sp+ : −I � x � I} as signal sets
• nuclear norm ‖u‖nuc (sum of singular values of a matrix) as the norm

quantifying recovery error

♠ Modifications of the results when passing from ellitopes to spec-
tratopes are as follows:
A. The “size” K of an ellitope (E) (logs of these sizes participate in our
tightness factors) in the case of spectratope (S) becomes D =

∑
k dk
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B. SDP relaxation bound for the quantity

Opt∗ = max
y

{
yTBy : ∃t ∈ T , z : y = Pz, S2

k [z] � tkIdk, k ≤ K
}

= max
z,t

{
zT B̂z : t ∈ T , S2

k [z] � tkIdk, k ≤ K
}
, B̂ = P TBP

is as follows:
We associate with Sk[z] =

∑
j zjS

kj, Skj ∈ Sdk, two linear mappings:

Q 7→ Sk[Q] : Sdim z → Sdk :
Sk[Q] =

∑
i,j

1
2
Qij[SkiSkj + SkjSki]

Λ 7→ S∗k[Λ] : Sdk → Sdim z :[
S∗k[Λ]

]
ij

= 1
2
Tr(Λ[SkiSkj + SkjSki])

Note:
• S2

k [z] = Sk[zzT ]
• the mappings Sk and S∗k are conjugates of each other w.r.t. to the

Frobenius inner product:

Tr(Sk[Q]Λ) = Tr(QS∗k[Λ]) ∀(Q ∈ Sdim z,Λ ∈ Sdk)

Selecting Λk � 0, k ≤ K, such that
∑

k S∗k[ΛK] � B̂, for

z ∈ Z = {z : ∃t ∈ T : S2
k [z] � tkIdk, k ≤ K}

we have ∃t ∈ T : S2
k [z] � tkIdk, k ≤ K ⇒

zT B̂z ≤ zT
[∑

k S∗k[Λk]
]
z =

∑
k z

TS∗k[Λk]z =
∑

k Tr(S∗k[Λk][zzT ])
=
∑

k Tr(ΛkSk[zzT ]) =
∑

k Tr(ΛkS
2
k [z]) ≤

∑
k tkTr(Λk)≤ φT (λ[Λ]),

φT (λ) = max
t∈T

tTλ, λ[Λ] = [Tr(Λ1); ...; Tr(ΛK)]

⇒

Opt∗ ≤ Opt := min
Λ={Λk,k≤K}

{
φT (λ[Λ]) : Λk � 0, k ≤ K, B̂ �

∑
k

S∗k[Λk]

}
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♠ Theorem [Ju&N,’17] SDP relaxation bound

Opt := min
Λ={Λk,k≤K}

{
φT (λ[Λ]) : Λk � 0, k ≤ K, B̂ �

∑
k

S∗k[Λk]

}
on the quantity

Opt∗ = maxy
{
yTBy : ∃t ∈ T , z : y = Pz, S2

k [z] � tkIdk, k ≤ K
}

= maxz,t
{
zT B̂z : t ∈ T , S2

k [z] � tkIdk, k ≤ K
}

is tight:

Opt∗ ≤ Opt ≤ 2 ln(2
∑
k

dk)Opt∗.

Note: The role of elementary Mini-Lemma in the spectratopic case is
played by the following fundamental matrix concentration result:
Noncommutative Khintchine Inequality [Lust-Picard 1986, Pisier 1998,
Buchholz 2001] Let Ai ∈ Sd, 1 ≤ i ≤ N , be deterministic matrices such
that ∑

i

A2
i � Id,

and let ζ beN -dimensional Rademacher random vector. Then for all s ≥ 0
it holds

Prob

{
‖
∑
i

ζiAi‖2,2 ≥ s

}
≤ 2d exp{−s2/2}.
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