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Four stories on the stability of linear
systems
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Consider a linear system of equations

-2

x(0)=1,

x(1)
y(1)

y(0)=0

cost
sint

H

2.5

|



Consider a linear system of equations

xO)=1+¢2,  y0)= — ¢ e=10"

t =10 sec.
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Consider a linear system of equations

x(0)=1+ ¢,

t =20 sec.
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Consider a linear system of equations

x(0)=1+ ¢,

t =40 sec.
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Consider a linear system of equations

x(0)=1+ ¢,

t =50 sec.
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Consider a linear system of equations

x0)=1+2¢  y0)=—c¢

t =45 sec.




Consider a linear system of equations

x0)=1+¢, y0)= — ¢ e=10"%

t =48 sec.

o
In t =60 sec. the point will be in 14 km. from the center.
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0 —1 ]’ /\1 — )\2 =1 = the system is unstable
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A linear dynamical system with continuous time:

x(t) = Ax(), t€[0,400), x(0)=x,

A system is stable if all trajectories tend to zero
(Hurwitz stability)

Re) <0, A € sp(A)

A linear dynamical system with discrete time:

X, = Ax, k€Z,  x,18 given

A system is stable if all trajectories tend to zero
(Schur stability)

IANT <1, A € sp(A)



Linear switching systems

E.Pyatnitsky, V.Opoytsev, A.Molchanov (1980),
N.Barabanov, V.Kozyakin (1988), L.Gurvits (1996)

P.Mason, M.Sigalotti, M.Margaliot, F.Blanchini, S.Miani,
U.Boskian, D.Liberzon, and many others

Consider a system of linear ODE

x(t)=A)x(t), te€]0,4+00)
x(0)=x,

X= X/(t),...., X, (t) , A(t) isadxd -matrix,
Vte [0,+0) Alt) € U
U is a compact set of matrices

Example. U = {A,A}

One choice of A(t):
X(t

Another choice of A(t):



Definition 1. The systemisstableif x(t) — 0 as t >«
for every x, and for every choice of A(t).



Story 1

Linear switching systems.
How to find the optimal Lyapunov
function?



Literature

There 1s a wide literature on switched systems.
A couple of monographs

D. Liberzon: Switching in systems and control. Systems
& Control: Foundations & Applications. Birkhéuser,
2003.

Handbook of hybrid systems control. Theory, tools.
applications. Edited by J. Lunze and F. Lamnabhi -
Lagarrigue. Cambridge University Press, 2009.




How to decide the stability ?

x(t)=A(t)x(t), te[0,400)
x(0) = x,

X= X(t),..., X, (t) , A(t) is a measurable control function,
A(t) € U foralmostall t € [0,+x)

If U consists of one matrix A, then x(t) = e" x,

the systemis stable < Re (L) < 0, forall eigenvalues A of A
(i.e., A isa Hurwitz stable matrix)

What to do if Card (U) > 2 ?

Necessary condition:

if the system is stable, then all matrices from co (U) are Hurwitz stable.

Not sufficient already for d =2 (L.Gurvits, 1999)



Conjecture 1 (P.Mason, R.Shorten, 2003) Sufficient for positive systems.

A system is positive if all A € U is Motzler,i.e. A, >0, i= ] .

A matrix is Motzler < e“>0 forall t.

Example.
-100 1 2
A= 0 =15 0
1 0 3

The conjecture is proved for d =2 by P.Mason and R.Shorten (2003)
and disproved for d >3 by L.Faishil, M.Margaliot and P.Chigansky (2011)

-1 0 0 —-10 0 10
Ap = 10 -1 0O , A = 0 -—-10 O :
0o 0 -10 0 10 -1



The optimal control approach
E.Pyatnitsky, V.Opoytsev, A.Molchanov, L.Rapoport (1970s - 19809)

Idea: to find the worst (fastest growing) trajectory solving the
optimal control problem by Pontryagin’s maximum principle:

||x(T)| | — max

x(t)=A@)x(t), t<[0,T]

x(0) = x,

A(t) € U foralmostall t € [0,T]

Solved usually numerically. The problem is difficult.

For positive systems it is easier (M.Margaliot, 2013), but still for small d.



The Lyapunov function

Definition. A continuous function f : R — R . Is called Lyapunov function if
1) f(x) > 0, x # 0,

2) f(ax) =af(x), a >0,

3) f(x(t)) isdecreasing int, for everty trajectory x(t) of the system.

There is a Lyapunov function = the system is stable.

The system is stable = there is a convex symmetric Lyapunov function (norm).

(L.Opoitsev (1977), A.Molchanov, E.Pyatnitsky (1980), N.Barabanov (1989)).



The Lyapunov norm

Take aunitball of thatnorm: B = x e R® | f(x) < 1

A, X

A norm f (x) is a Lyapunov norm

!

for every x € 0B and forevery A € U
the vector Ax starting at the point x is "directed inside" B.



A quadratic Lyapunov function

Thus, to prove the stability it suffices to present a Lyapunov function f (x).

How to find f(x) ?

This is equivalent to constucting a convex body B.

The most natural choice is a quadratic function f(x) = «/ Xx'M x, where M is p.s.d. matrix.

A matrix M > 0 defines a Lyapunov function < A'™M + M A <0 VAeU
This is an s.d.p. problem, it can be efficiently solved.

However, this is just a sufficient condition. In practice, it is far from being necessary.

Very often a quadratic Lyapunov function does not exists, although the system is stable.

There are other types of Lyapunov functions in the literature
(piecewise-quadratic, polyhedral, sum-of-squares, etc.)



Definition. The Lyapunov exponent o(A) is the infimum of numbers « such that

Hx(t)” < Ce™ forall trajectories x(t).

The system is stable if and only if o(A) < O.

Theorem (N.Barabanov, 1989). For an arbitrary irreducible system there exists an

invariant Lyapunov norm f(x)= ‘ ‘x , for which two conditions are satisfied:
1) Hx(t)H < ||x(O)He"’ for all trajectories x(z).
2) There is a trajectory x(¢) such that |px(r)]| = [[x(0)[|e”" forallt.

In case 0 =0
(The geometric interpretation). There is a symmetric about the origin convex body G C R?

such that all tracterures started in G never leave it, and there is at least one trajectory

that entirely lies on the boundary of G.

The invariant norm may not be well-approximated by quadratic functions



Polytope (piecewise-linear) Lyapunov function :

f(x) = ‘max (a, ,x)

Theorem (F. Blanchini, S. Miani, 1996) For any stable LSS there exists a
polytope Lyapunov norm.

The polytope norm is extremely difficult to compute already in the dimension 3

To construct a polytope norm we consider first the discrete systems
X, = Ax,, k€Z,  x,1s given

A system is stable if all trajectories tend to zero
(Schur stability)

Theorem (N.Barabanov, 1988) A discrete system is stable if and only if
its joint spectral radius is smaller than one.



The Joint spectral radius (JSR)

A, -+ A_ are linear operators in R*

1/k

A e A — Ilm max o o .
p(A1 m) L A, Ajl Ajk J.C.Rota, G.Strang (1960) -- Normed algebras
N.Barabanov, V.Kozyakin, C.Micchelli, H.Prautzch, W.Dahmen, I.Daubechies, J.Lagarias,
E.Pyatnitsky, V.Opoytsev, A.Levin, N.Dyn, P.Oswald,...... (1989) C.Heil, D.Strang, ... (1991)
L.Gurvits, ...(1988)

Subdivision algorithms Wavelets

Linear switching systems



The Joint spectral radius (JSR)

A -+, A are linear operators in R*

'A\il"'pﬁk

1/k
B(A A) = lim  max

ko dy,...d, e{L,....m}

Example 1. If m=1, we have a family of one matrix {A};

.....

Example 2. If all the matrices A ..., A, are orthogonal, then H Ay A=

hence p =1

Example 3. If all the matrices A,..., A, are diagonal, then

p = max{p(A),... p(A, )}

commute

The same is true if all the matrices H
[] are upper (lower) triangular
N
p

are symmetric

In general, however,

> max{p(A),... p(A )}




The Joint spectral radius (JSR)

A, ', A are linear operators in R*

1/k

p(Al. e ] Am) = II(I—rIJo d1 ..... I(;E](—:a{i,(,m} Ajl Aﬂk AZG
The geometric sense:

p<1l < thereexistsanorm |e| in R AG
such that HA,H <1 forall i =1 .., m

Taking the unit ball in that
norm:

p <1 < thereexists a symmetric convex body G IR such that A.Gc intG, i

Example 4. If all the matrices A,..., A, are symmetric, then
one can take G aEuclideanball = p = max{p(A)),.... p(A,)}

Example 5. Ifall A,..., A, areorthogonal projections, then
one can take the same Euclideanball = p =1



Other applications of the Joint Spectral Radius

Probability

Combinatorics

Number theory

Mathematical economics

Discrete math



How to compute or estimate ?

Blondel, Tsitsiklis (1997-2000).

The problem of JSR computing for nonnegative rational matrices in NP-hard

The problem, whether JSR is less than 1 (for rational matrices) is algorithmically
undecidable whenever d > 46.

There is no polynomial-time algorithm, with respect to both the dimension d and the accuracy



The main inequality for JSR

For every k we have

max [ p(AA)] < p o< max

dy....d {1,.... m}

1/k

Ajl...Adk




The concept of extremal norm

Definition. Anorm | .| is called extremal if H AJH <p, j=1..m.

For the extremal norm the convergence is realized within one step.

If G is the unit ball in that norm, then A G < pG, j=1..m.

AG G

AG



Methods for estimating JSR

“ By definition" (Daubechies, Lagarias, Heil, Strang, .... 1991)

Using the inequality

max [ p(AA)] < p o< max

dy ooy dy {1,y m "~ dy,nd€fL,.., m}

Very slow and rough. Only for small dimensions (d <4)

“"Branch and bound" algorithm (G.Grippenberg, 1996)

A1A1

Pretty rough (relative error at least 2 - 5 percent), but much faster




“"Best ellipsoidal norm” (Ando, Shih (1998), Blondel, Nesterov, Theys (2004))

o

Approximates the extremal norm by ellipsoids, using SDP.
Works for high dimensions (up to d =20), but quite rough.

“Tensor products of matrices" (P. (1997), Blondel, Nesterov (2005))

Approximates the extremal norm by even polynomials
Fast, but very rough

“Sum of squares algorithm" (Parrilo, Jadbabaie (2008))

Approximates the extremal norm by some of squares polynomials.
More or less the same complexity as the previous method.



The algorithm for exact JSR computation
N.Guglielmi, V.P., Found. Comput. Math, 13 (2013), 37-97

We take the leading eigenvector v, of IT=A,"'A, .
Set v;=A, "rA Vv, j=2,mvk

k—jre

The “dead” branches

Every time we check if the new vertex is in the convex hull of the previous ones
(this is a linear programming problem).

The algorithm terminates, when there are no new vertices.

The invariant polytope G is the convex hull of all vertices produced by the algorithm




The family of matrices from the problem of Euler partition function:
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We choose IT = AA,

The extremal polytope G, has 16 vertices.




JSR computation for randomly generated matrices of dimensions d =5, ...

JSR JSR
i # its # vertices  s.m.p. d # 1ts  # vertices s.m.p.
5 3 14 A1 As i 4 26 Aiq
5 T 23 A3 A3 i 0 51 A1 As
5 12 37 Aj [ 5 38 .-1."%'.-1-3
T T 1060 A 5 19 117 .-1.*?.-1-;.- {
T 12 140 .-1?.-1.9.-1.1 1 5 8 49 Ay
T 24 223 1?1.?,, 5 12 5 Aq 13
0 18 T .-lf.-ig 10 16 230 Aq 1}_.
0 13 172 .-l:f.-ig.-il.lg 10 0 109 Ay
0 10 129 Aa 10 24 408 (.-1*?.-1.9 249
11 20 TOT 1?1.% 12 31 1530 A1 AsATAS
11 14 340 .-l'f.-ig.-i 1Aa 12 0 211 Aq1As
11 12 183 .-1?.-1.9 12 13 215 .-1.1.-1E
15 18 T15 .-lf.-lg.-h.li_{ 20 21 1530 AqAs
15 | 14 570 Ala, 20 | 16 1219 A1 A3
15 14 3090 Aa 20 16 1247 1.%' 1:;_'




JSR computation for positive matrices of dimension d = 100.

J5R LSR

density | # its  # vertices sm.p. | # 1ts8  # vertices s.Lp.

0.2 6 24 AT A2 i 31 A1A43

0.2 6 23 Aq1Ag G 28 1{’1:;

0.2 7 a7 A1A3 f 20 A1As

0.2 5} 21 Aq .-1% T 24 .-1%.-1-3

0.5 H 10 A1 An 5 15 Aq .-1%

0.5 é 7 A7 Az 4 8 A1 Az

0.5 6 18 lf .-1% 5 16 .-1%.-19

0.5 6 22 .-1.1.-1.% 1 (6) 0 (14) Ay and As
0.8 4 T A1A2 4 T A1Aa

0.8 T 18 .-1"1-”.-19 G 14 1f1j’

0.8 B 14 .-11.-1% O (7) 14 (16) Aq and As
0.8 5 12 .-1?.-19 5! 12 A Az




Conditions for finite terminating of the algorithm

Definition. A product IT=A, A, iscalled dominant if p(IT)=1,
and there is q <lsuchthat p(A)<q foranyproduct A=A, - A,

that is not a power of IT nor of its cyclic permutations.

dominant x» s.m.p.

Theorem 1. The algorithm terminates within finite time if and only if the product IT is dominant.



The idea: to discretize the system, to construct an invariant politope for it
and then to use it as a Lyapunov norm.

N.Guglielmi, L.Laglia, V.Protasov, Found. Comput. Math. 17 (2017), 567-623.

The upper and lower bounds for the Lyapunov exponent:

. . . A . . A
Fix 7> 0, consider a discrete system e with matrices e .

Let P be the invariant polytope for the family e™ ,...,e™

Define the two folloving values:
Br) = 7 'ple™,....e™)
a(t) = inf {oz >0 | for each vertex v of P, for each k, the vector (A, - al)v is directed inside P}

Theorem. Forevery family A = {A,,...,A } and forevery 7 >0 , we have
Br) < o < ar)
Moreover, there 1s a constant C > 0 such that

a(t) — B(r) < Cr, TER

+



Constructing a polytope Lyapunov function for LSS.

Wetake 7 = At = 1and then divide it by 2 as many times as we can.
Foreach r = At we find a dominating product of the family 1+7U

and build an invariant polytope. This gives a lower and upper bounds for o (U).
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—0.0822 0.0349 —0.1182 0.1391 0.1397 —0.0916
Al = 0.0953 —0.0897 —0.1719 |, Ay = | 0.0338 —0.1769 —0.0707
0.0787 0.0223 —0.2781 0.7417 0.3028 —0.4621

Table 1 Approximation of the Lyapunov exponent (Example 1)

T p o y I7 £ #V

1/2 —0.0470 0.0074 0.0545 B B2 0.05 163
1/2 —0.0470 —0.0148 0.0322 B?'B% 0.025 322
1/4 —0.0410 0.0089 0.0350 B> B3® 0.0125 423

1/4 ~0.0410 —0.0243 0.0227 B> B3® 0.005 1655







For positive systems (i.e., defined by Metzler matrices) the
method works much faster even in relatively high dimensions

Table 13 Statistics on LE computation for Metzler problems of dimension d = 50 with entries in [—1, 1]

T Lmin Lmax #Vmin # Vmax #V) ¥Ymin ¥Ymax (v)

1/4 1 2 2 2 2 0.321 0.624 0.5115
1/16 | 3 4 7 5 0.1798 0.334 0.2775
1/64 1 15 11 28 22 0.094 0.126 0.1143

74 55 0.079 0.097 0.0894

tn
]
d

1/128 1 I




Story 2

The problem of the steplength in the Euler
broken line

and the Markov-Bernstein inequality for
exponents.



Discretization of alinear switching system

We make the discretization wirh the stepsize 7> 0

x, =x(kt); A, =AkT), kEN

i) A~ x(kt+ TT) —x(kT) _ kaT— X,

and obtain the discretized system:

X = (It TA)X, keN
X, Is given, A €U

Theorem (A.Molchanov, E.Pyatnitsky, 1980).
If the discretization is stable for some 7, >0, then it is stable

forall 7 <7, and the corresponding continuous system is stable.



How to decide the stability of the discretized system ?
X = (I+ 1TA)X, keN
X, Is given, A U

Denote | + tA = B, . Then X, =B, ==ByX,.

The problem becomes: to determine, whether ‘max

B.***By| >0 as k> ?

Answer: when the joint spectral radius (JSR) of the set | + tU is smaller than 1.

Theorem 3 (N.Barabanov, 1988). The discrete system is stable < p(l +1tU) <1.



The system is stable < thereis t > 0 such that the discretized system is stable.

The problem is t may be very small. It is a priory not clear which t is enough.

Definition. The Lyapunov exponent c(U) is the infimum of o such that
[x®| < Ce*, t>0
The system is stable < o<0

Assume sp(A) C R, A €U, then

Theorem 2. (V.Protasov, R.Jungers, 2013)
For an arbitrary € > 0, to distinct the cases c(U) < 0 and c(U) > - ¢
3

2d2

it suffices to take t = e, Wherer = max p(A)

8r



The idea of the proof

Theorem (A.Markov, S.Bernstein, 1889) For an algebraic polynomial of degree d,
we have

||p'||c[—1,1] S d2||p||C[—1,1]

The equality holds only for polynomials proportional to the Chebyshev polynomial T,




||p'||C[—1,1] S d2||p||C[—1,1]

This inequality can be extended to every Chebyshev system of functions.
In particular, to the sum of real exponents:

d
p(t):Ze_aktv &, 0 >0
k=1

Theorem (P.B. Borwein, T. Erdélyi, 1995) For an exponentioal polynomial of degree d,
we have

cad ||p]|

Hp' ||C[o, +00) C[0,+c0)’

where a= max{a,--,o,}, ¢ > 0 1isa constant

The sharp estimates for the constant ¢ have been found by V.Sklyarov (2010).



We apply this inequality on exponential polynomials for the numbers

a, = =N, k=1,..d, where {\,...,\,} = sp(A)

However, this method is applicable to matrices with a real spectrum only!
For general complex numbers this does not work because:

Complex exponents do not form a Chebyshev system

How to solve the problem

p(0) — max
||pHC[0,+oo) <1

d
py=7y e™
k=1

For arbitrary complex numbers «,---,a, € C?

Neither alternance idea nor Remez type of algorithms work here



Thant you!



