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A linear dynamical system  with continuous time:  

A linear dynamical system  with discrete time:  

A  system  is stable if all trajectories tend to zero  

                       (Hurwitz stability) 

A  system  is stable if all trajectories tend to zero  

                       (Schur stability) 



 Linear switching systems 

E.Pyatnitsky, V.Opoytsev, A.Molchanov (1980),   

N.Barabanov, V.Kozyakin (1988), L.Gurvits  (1996)   

 

P.Mason, M.Sigalotti, M.Margaliot,  F.Blanchini, S.Miani,  

U.Boskian,  D.Liberzon, and many  others 
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                        Linear switching systems.  

               How to find the optimal Lyapunov 

function? 
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( )    for almost all [0, ]    A t U t T

                             The optimal control approach 
     E.Pyatnitsky, V.Opoytsev,  A.Molchanov,  L.Rapoport (1970s  - 1980s) 

 

 

  
Idea:  to find the worst  (fastest growing) trajectory  solving  the  

optimal  control problem by Pontryagin’s maximum principle:  

Solved usually numerically.   The problem is difficult. 

 

For positive systems it is easier (M.Margaliot, 2013), but still for small d.  
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The Lyapunov norm 

Take a unit ball of that norm:       |    (  1  )   dB x f x
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A quadratic Lyapunov function 

 Thus, to prove the stability it suffices to present a Lyapunov function ( ). f x

How to find   ( ) ?   f x

This is equivalent to constucting a convex body B. 

The most natural choice is a quadratic function  f(x) = ,   where  M is p.s.d. matrix. Tx M x
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However, this is just a sufficient condition.  In practice, it is far from being necessary. 

 

Very often a quadratic Lyapunov function does not exists, although the system is stable.  

 

 

There are other types of Lyapunov functions in the literature 

                      (piecewise-quadratic, polyhedral, sum-of-squares, etc.)    



The invariant norm may not be well-approximated by quadratic functions 



Polytope  (piecewise-linear) Lyapunov function :  

A  system  is stable if all trajectories tend to zero  

                       (Schur stability) 

Theorem (F. Blanchini, S. Miani, 1996)    For any stable LSS there exists a 

polytope Lyapunov norm.  

The polytope norm is extremely difficult to compute already in the dimension 3   

To construct a polytope norm we consider first the discrete systems 

Theorem (N.Barabanov, 1988)    A discrete system is stable if and only if  

 its joint spectral radius is smaller than one.  
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The Joint spectral radius (JSR) 

J.C.Rota, G.Strang (1960)  -- Normed algebras 

  I.Daubechies, J.Lagarias ,        

C.Heil,  D.Strang,  … (1991) 

 

                 Wavelets 

C.Micchelli, H.Prautzch,  W.Dahmen,  

A.Levin, N.Dyn, P.Oswald,…… (1989)   

 

      Subdivision algorithms 

N.Barabanov, V.Kozyakin, 

E.Pyatnitsky, V.Opoytsev,  

L.Gurvits, …(1988) 

 

   Linear switching systems 
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Other applications of the Joint Spectral Radius 

Combinatorics 

Probability 

Number theory 

Mathematical  economics 

Discrete math 



How to compute or estimate ? 

Blondel, Tsitsiklis (1997-2000).      

 

The problem of JSR computing for  nonnegative rational matrices in NP-hard 

 

 

The problem, whether JSR is less than 1 (for rational matrices)  is algorithmically 

undecidable  whenever  d > 46. 

 

 

There is no polynomial-time algorithm, with respect to both the dimension d and the accuracy 



The main inequality for  JSR 
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ˆA norm .   is called extremal if Definit .ion.  , 1,...,jA j m

ˆIf  G  is the unit ball in that norm, then  ,     1,..., .jA G G j m

For the extremal norm the convergence is realized within one step. 
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The concept of extremal norm 



Methods for estimating JSR  
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(Daubechies, Lagarias, Heil, S``By trangdefinition'' , ....   1991)

Very  slow and rough. Only for small dimensions (d 4)

``Branch and bound'' algorit (G.Grippenberg, 19 hm 96) A2 A1 
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A2A2 
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A1A2 

Pretty rough  (relative error at least 2 - 5 percent), but much faster



(Ando,  Shih (1998),  Blond``Best ellipsoidal norm''  el, Nesterov, Theys ( 2004))

Approximates the extremal norm by ellipsoids,  using SDP.

Works for high  dimensions  (up to d =20), but quite rough.

(P. (``Ten 1997)sor produc ,  Blondelts of matr , Nesterovices''   (20 05))

Approximates the extremal norm by even polynomials 

Fast, but very rough

``Sum of squares algorithm''  (Parrilo, Jadbabaie ( 2008))

Approximates the extremal norm by some of squares polynomials.

More or less the same complexity as the previous method. 
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Every time we check if the new vertex is in the convex hull of the previous ones 

                                  (this is a linear programming problem).  

               

                   The algorithm terminates, when there are no new vertices.   

The invariant polytope G is the convex hull of all vertices produced by the algorithm 

The ‘’dead’’ branches 

3v
….. 

kdA

2dA

1dA

2kdA

1kdA

       The algorithm for exact JSR computation  

 N.Guglielmi, V.P.,  Found. Comput. Math, 13 (2013),  37-97 

...
... ...



The family of matrices from the problem of Euler partition function: 

1 3We  choose  A A

3The extremal polytope  G   has  16 vertices. 



JSR computation for randomly generated matrices of dimensions d = 5, …, 20 



JSR computation for positive matrices of dimension  d = 100. 



Conditions  for  finite terminating of the algorithm  
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The algorithm terminates  within finite time if and only if  the produTheorem 1. ct   is domina nt.   

s.m.p. dominant 



 The idea: to discretize the system, to construct an invariant politope for it 

 and then to use it as a Lyapunov norm.   

N.Guglielmi, L.Laglia, V.Protasov,  Found. Comput. Math. 17 (2017),   567-623. 

The upper and lower bounds for the Lyapunov exponent: 



We take        1 and then divide it by 2 as many times as we can. 

For each      we find a dominating product of the family  

and build

Constructing a polytope Lyapunov function for LSS.
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For positive systems (i.e., defined by Metzler matrices) the  

method works much faster even in relatively high dimensions 
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       The problem of the steplength in the Euler 

broken line 

          and the Markov-Bernstein inequality for 

exponents.  
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Discretization  of a linear switching system  
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The system is stable there is   > 0 such that the discretized system is stable.
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The idea of the proof 

 

Theorem (A.Markov, S.Bernstein, 1889)  For an algebraic polynomial  of degree d,  

we have  

 

   

 

The equality holds only for  polynomials proportional to the Chebyshev polynomial Td  



This inequality can be extended to every Chebyshev system of functions.  

In particular, to  the sum of real exponents: 

 

 

 

 

Theorem (P.B. Borwein, T. Erdélyi, 1995)  For an exponentioal  polynomial  of degree d,  

we have  

                                         

 

   

 

  The  sharp estimates for the constant с  have been found by V.Sklyarov (2010). 

 

 

 

  

 

 



      We apply this inequality on exponential polynomials  for the numbers 

 

 

  

 

 However,   this method is applicable to matrices with a  real spectrum only! 

For general complex numbers this does not work because: 

Complex exponents do not form a Chebyshev system  



Thank you!  


