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Four stories on the stabllity of linear
systems



Story 3
Positive linear systems.

How to find the closest stable/unstable
system?



A linear dynamical system with discrete time:
X = Ax,, k€Z,_  x,1s given

A system is stable if all trajectories tend to zero (Schur stability)

AT <1, A € sp(A)

Problems
How to find the closest stable matrix to A ? How to find the closest unstable matrix to A ?
How far A is to the set of stable matrices ? How far A is to the set of unstable matrices ?

||X—A||—>min
p(X)=1

This is equivalent to the optimizing of the spectral radius of a matrix over a matrix ball



Let A bea d xd matrix, o(A) be its spectral radius.
If 1,,..., 4, areeigenvaluesof Aand |[1,| = ... = | 4,|, then p(A)=|4,].

Theorem 1. (Perron (1906), Frobenius (1913)). If A > 0, then the spectral
radius is attained at a real positive eigenvalue p(A)=4, > 0.

There is an eigenvector v >0 such that Av=A,v.

If A > 0, then the largest by modulo eigenvalue is unique and simple,
and so is the corresponding eigenvector.

p(A) = 4,

Wecall 1., = A,= p(A) the leading eigenvalue and v the leading eigenvector.



Optimizing the spectral radius of a matrix

The general problem:

p(A) — max/min
AeM
M is a set of marices.

The nonnegative case:

e (A) = max/ min
AeM

M is a set of nonnegative marices.

These problems are both notoriously hard
(even if the set M is convex).

Reasons:
® The spectral radius is neither convex nor concave in matrices

® The spectral radius is non-Lipschitz, if the leading eigenvalue is multiple.



Example 1. Fortheset M = [A,A] = co{A, A},

We have A = (1-x)A + XA,
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We consider the closest stable nonnegative matrix in two polyhedral forms in R :

d
The L —norm: ||A||OO: max Zlaiil

i=l,...,
d
The L, —norm: ||A||OC: max Zla..l
Jj=l,.. ;
The problem becomes:

Find the minimal 7 >0 with the following property:

The matrix can be made stable/unstable by chanding elements of each row by at most 7 in the sum

* X X %
E L
EE R
* X X %

Note that rows of the matrix can be changed independently of each other.
Every row runs over an L1 — ball independently of others.



We consider special sets of matrices

Definition 1. A family of matrices is called a product family, if the rows of matrices are
chosen independently from given sets (uncertainty sets) Fi. i = 1, ..., d.

Example 2. A family of 3x3-matrices. The uncertainty sets are

For the first row a, :
F. = {(0502,0.2); (0.4,0.30.2); (0.6,0.1,0.2); (0.550.250.15)}

For the secondrowa,: F, = {(0,2,1)};

Forthe thirdrowa,: F, = {(0.4,0.1,2); (15,0)}
(0.5,0.2,0.2)

(0.4,0.3,0.2)
(0.6,0.1,0.2)

£ (0.4,0.1, 2)

We obtain the family M of 4x1x2 = 8 matrices




We have minimized the spectral radius over the set of eight matrices

Suppose we have four rows for each line 1, 2, and 3.

In this case we have 4x4x4 = 64 matrices.
We choose one with the smallest leading eigenvalue.

Curse of dimensionality

If we have d =50 and just TWO lines in each uncertainty set,

then the total number of matrices is 2°° > 10%°.

Moreover, the set of rows may be polyhedral
(a subset of R* defined by a system of linear inequalities).

One needs to apply some optimization technique
to minimize the spectral radius over a set of matrices




Product families with row uncertainties

V.Kozyakin (2004)
V.Blondel, Y.Nesterov (2009)
Y.Nesterov, V.P. (2013)

Applications:
O Leontief model (mathematical economics)
O Structured population dynamics, mathematical ecology

O Spectral graph theory

O Asyncronouos systems



Optimizing the spectral radius for product families

Studied in: Y.Nesterov, V.P. (2013), V.P. (2015)

The spectral simplex method

Definition 2. A one-line correction, of a matrix is a replacement of one of its lines.

Example 3. A correction of the first line. We replace the row a, by some row a’;.

& Ay Ay a’), aj, a '13

A = a a a v
21 22 23 —_— A = a, A, a,
Ay 33 g a, a, a,



Theorem 2. Let M be a product family of strictly positive matrices, F,, ..., F, be uncertainty sets.
For every A € M with the leading eigenvalue 4 and eigenvector v, we have

a) Ifthereis a'. e F suchthat (v, a’) > (v, a),
then after the one-line correction we have

A (A) > A (A)

max

b) If the matrix A is maximal in each row with respect to v, i.e.,
(v, a) = max(v, a"), 1=1..., d, then

a‘iEFi

max (AA)

A (A) = Mmax A
A'eM



The spectral simplex method

Initialization. Take an arbitrary matrix A, € M.

Main loop. We have a matrix A, and its leading eigenvector v, > 0.

Forevery i=1,...,d do:

Step i. Find a' =argmax (v, b).

bi EFi

If a' = a, thenset A ,=A andgo tothestep i+1.

Otherwise, we have (v,a') > (v, a).
Make the one-line correction in the ith line.
Theorem 3 implies that p(A',) > p(A).

Put A, =A',. Wehave p(A,) > p(A).
Compute the leading eigenvector v, , >0 of A, .

Go tostep i=1.

If the dth step is over, then END.



Theorem 3. For strictly positive matrices, the spectral simplex method
Is well-defined, does not cycle, and finds the solution within finite time.



Theorem 3. For(strictly positive pnatrices, the spectral simplex method
Is well-defined, does notcycle, and finds the solution within finite time.
In many problems, the matrices are sparse. In this case we are in trouble.

® The leading eigenvector v of a matrix A may not be unique.

e !he spectral radius is not strictly increasing with iteration,
but just non-decreasing

The algorithm may cycle.

Example 4. F, = {(0.5, 1, 0.5), (0.5, 0.5, )}, F, = {(0, 1, 0)}, F,= {(0, 0, 1)}

05 1 05 05 05 1
0 1 O : 0O 1 O
0 0 1 D 0O 0 1

For sparse matrices, the algorithm cycles very often.




Theorem 4.  Assume a nonnegative matrix A has a simple leading eigenvector v>0, |lv|=1.
Then after an arbitrary one-line correction such that (v, a') > (v, a,),

the matrix A' possesses the same property.

d; d, a5
A = Ay 8y, Ay — A
a3 83 g
a ll — (a 1

a |11 a I12 a '13
a‘21 a22 a23
A3 4y Ay

w,a',,a',) suchthat (v, a') > (v, a).

Theorem 5. If the initial matrix A, of the spectral simplex method has a simple leading eigenvector,

then all matrices in all iterations possess the same property, and the algorithm does not cycle.

How to choose A, to possess a unique leading eigenvector ?

For instance to take the kth row of A to be the arithmetic mean
of all rows from the uncertainty set F, foreachk =1, .., d.



The numerical efficiency of the spectral simplex method

Table 1 The number of _

U o d/n 2 5 10 50 100

iterations for maximizing the

spectral radius of positived xd 5 3 6 ] 10 13

matrices ) ) )
10 7 12 14 18 23
50 29 48 58 92 |09
100 56 99 131 197 213

The sets JF; are finite, each hasn 50 774 547 701 q84 1034

elements

Ford =100, n=2, we have the 100-dimensional Boolean cube.

2 100

The number of vertices is However, the algorithm performs only 56 one-line corrections.

t =12 s.

For d =10, n =100, the set M contains 100*°=10" matrices. The algorithm performs 23 iterations.

t =0.3s.

For d =100, n=100, the set M contains 10** matrices. The algorithm performs 213 iterations.

t =40 s.




The numerical efficiency of the spectral simplex method

Table 2 The number of

) . S dn 2 5 10 50 [ 00

iterations for mimmizing the

spectral radius of sparse d = d 5 4 8 13 17 7

matrices ) -
10 9 19 27 3l 51
50 37 56 79 131 199
100 73 127 178 207 343
500 404 742 1101 1384 1934

Each set J; has n elements



The classical simplex method (for linear programming, G.Dantzig, 1947).

(c,X) — max
(a,x) < b, i=1..,N

LP problem: {

Step-by-step increasing of the objective function (c, x)
going along the edges of the polyhedron
G ={(,x) <hb, i=1 .., N}

In practice, converges extremely fast.
G.Dantzig believed that the number of steps is linear in N and d.

1972. V.Klee and G.Minty constructed an example with 2" iterations.

In average, the number of iteration is indeed linear in N and d (S.Smale, 1983).

What is the theoretical complexity of the Spectral simplex method ?




Theorem 6. For a product family M of strictly positive matrices,
there are constants C >0, q (0,1), such that

Ip(A)) - p(A)] < Cq",

where A, is the optimal matrix, A, is the matrix obtained in the Nth iteration
of the spectral simpex method.



Corollary for the closest unstable matrix problem:

{ IX — Allec — min (25

X>A4 pX)=1

To characterize the optimal solution X we use notation E; = eef, the matrix with the kth
column of ones and all other elements are zeros.

Theorem 5 The absolute minimum of the problem (24) is attained at the matriz
X = A+ 7E, (26)

where T is reciprocal to the biggest component of the vector (I — A)'e and k is the index of
that component. The value of the problem is equal to 7.

Conclusion: to make the matrix unstable one needs
to change its elements by the same number in one column!
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The structure of the closest STABLE matrix is more complicated
It can be found by the spectral simplex method.

The spectral simplex method works equally well for both
minimization and maximization problem.

To find the closest stable matrix, one fix 7 > 0, solves the problem

p(X) — min
X -4l =7

and the find the smallest 7 by bisection.



Applications:

Optimizing the spectral radius of a graph

Problem 1. Let us have a set of vertices V = {g1..... g4}, and for any vertex g;
a finite family of subsets V; of the set V be given. Maximize/minimize the spectral
radius of a graph such that for every i the set of incoming edges (more precisely, the
set the corresponding adjacent vertices) for the vertex g; belongsto Vi, i =1, ....4d.

Problem 2. We are given a set of vertices g1, ..., gg and a set of nonnegative
integers 1y, ..., ng. IThe problem is to find graphs with the largest and the smallest
spectral radius among all directed graphs such that the number of incoming edges for
any vertex g; isequalton;, i =1,....4d.



Story 4

Positive systems in the problems of
Mathematical Economy and Population
Dynamics



Applications:

The Leontief model:
how to make the economy productive



Wassily Wassilievich Leontief (1906 - 1999)
Bacunun Bacunbesud JleoHTbEB

1906 born in the family of W.Leontief (from an old-believer Russian orthodox family)
and Genya Leontief (Becker) from a rich Jewish merchant family from Odessa.

1924 Masters degree in Economics, University of Leningrad (St. Petersburg).
® Was persecuted and detained several times by Soviet authorities.
1925 was allowed to leave Soviet Union

@ 1932-1975 affiliated with Harward, from 1975 is with the New York University.

‘ 1973 the Nobel Prize in Economics.



The Leontief input-output model (1966, Nobel Prize 1973)

expresses inter-industry relationships in linear algebraic terms.

Suppose the economy has d sectors.
The ith sector produces x; units of some single homogeneous good.
To produce one unit it consumes a; units from sector j.

The final demand:
In addition, each sector must leave b. units of its output to consumers

Forevery i=1 ..., d, we have the equality

d
X = b+ Zaijxj
j=1

Around 1949, Leontief used the primitive computer systems at Harvard to model data
provided by the U.S. Bureau of Labor Statistics .

He divided the U.S. economy into d =500 sectors.



In the matrix form: A = (a;), 1,jJ =1 .., d:

(1) X = AX + b

Definition 1. The economy is productive if it is able to provide any final demand.

L]

Equation (1) has a nonnegative solution X for every nonnegative b.

Theorem 6. (W.Leontief). The economy is productive ifand only if p(A) < 1.



Productivity of the economy in the Leontief model

The economy is productive < A4 .. (A) < 1.

Basically, the smaller A . (A) the better.

x = » Ab (reducing A, makes x smaller) =
k=0

The economy provides the necessary final demand b using less amount of resources x.

What todoif A4, ., (A) =17 or A.. (A) isveryclosetoone ?



Example 5. We have three sectors, x = (X, X,, X,) IS the value of the production.

05 02 0.2
A=10 03 07
05 0 0.6

A .. (A) =1 = Theeconomy is not productive

Suppose we have a choice between four technologies producing the first good.
Each technology has its own requirement of resources <> hasitsownrow a = (a,,3,, )
a, = (050.20.2):; (0.4,03,0.2); (0.6,0.1,0.2); (055, 0.25,60.15)
(05,02,02) = A_. (A =1
e (04,03,02) = A_. (A =1.008
A=|l0 03 07 06,01,02) = A, (A =0.988
05 0 06 (0.55,0.25,0.15) = 4__ (A) =1.019

06 0.1 0.2
The third technology, A=| 0 03 07| = A1, (A) =0.988 = the economy is productive
05 0 0.6
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‘ 0. Intro: What are the ‘Matrix Population Models’? I

Hans J- Math. Biol. 44, 450-462 (2002) |
»

Applications of Perron—Frobenius theory to population
dynamics

Theorem 4.4. Let P, T and F satisfy the conditions of Theorem4.2. Fors > o(T)
define

q(s) = p(F(I —T/s)"/s. (12)

Then q(s) > 0. Let P(s) =T + F/q(s). Then its growth rate, p(P(s)), is s, and
its net reproductive rate is

Ro(s) = Ro/q(s).
Further, one of the following holds:

1 =5=Rp(s), or 1<s<Ro(s), or 0<Ro(s)<s <. (13)

R A S I S B T L R D e e R v gueeur

o(P) by r and the net reproductive rate p(Q), where Q = F(I — T) sl , by Ry.
Then one of the following holds:

r=Ry=1, or 1 <r < Ry, or O<Ry<r<l. )

If Ry > 0, then

o(T + F/Ry) = 1. (10)



Projection Matrix: general case

«$tagege classes

D4

Constraints: nonzero survival: nonzero reproduction:
O<s+r+%;<1,]=1,...,n, b,+..+b,,+b,>0

matrix 1 Substochastic matrix F bounded




Problem. Let A be a nonnegative matrix. How to verify that A__ > 1 without computing A ?

Indicator. A function f(A) isanindicatorif 4 >1 < f (A) > 1.

Problem (D.Logofet, 2002). Does the function f (A) =1 - det (I-A) possess
the indicator property for projection matrices ?

For some cases it was proved by Logofet and Klochkova in 2004.

This is equivalent to the property 1, < 1, where A, is the second largest

REAL eigenvalue.

Theorem. This property always holds for matrices of the form A= T +F,
where T is a substochastic matrix, F is a rank-one matrix.

Theorem. If Ais arank-one correctionof T,and A, T > 0, then 4,(A) < 4_.(T).




Corollary. For every matrix of the form A =T +F,
where rank F =1, we have 4,(A) < A (T).

If 1

max

(T) <1, inparticular, if T issubstochastic, then
A (A)>1 < f(A) =1-det (I-A) >1

Corollary. If Ais arank-one correction of a matrix with
spectral radius < 1, then the function f(A) = det (A-1)
possesses the indicator property, i.e., 4. (A)>1 < f(A) > 1

Note that the projection matrix L = T + A is a one-line
correction (since F has one nonzero line) of a substochastic matrix T,
for which A__ (T) < 1. Therefore,

Theorem. For every projection matrix, the function f(L) = det (L-1)
possesses the indicator property, i.e., 4. (L)>1 <« 1-det (I-L) > 1.



Thiank you!



