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           Four stories on the stability of linear 

systems 



                                    Story 3  

 

                            Positive linear systems.  

 

          How to find the closest stable/unstable 

system? 



A linear dynamical system  with discrete time:  

A  system  is stable if all trajectories tend to zero (Schur stability) 

Problems 

How to find the closest stable matrix to A ? 

How far A is to the set of stable matrices ? 

How to find the closest unstable matrix to A ? 

How far A is to the set of unstable matrices ? 

This is equivalent to the optimizing of the spectral radius of a matrix over a matrix ball 
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Optimizing the spectral radius of a matrix 
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These problems are both notoriously hard  
                 (even if  the set M is convex).  

The spectral radius is neither convex nor concave  in  matrices 

The spectral radius is non-Lipschitz, if the leading eigenvalue is multiple.  

Reasons: 
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We consider  special  sets  of matrices  

Definition 1.  A family of matrices is  called a product family, if the rows of matrices are 

chosen independently from  given sets (uncertainty sets)  Fi,       i   =  1, …,  d.  
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(0.5 , 0.2 , 0.2)

(0.4 , 0.3 , 0.2)

(0.6 , 0.1, 0.2)

(0.55 , 0.25 , 0.15)

A family of 3x3-matrices. The uncertaintyExample 2.  sets  are 

 2 2For the second row :    (0    , 2,1) ;a F 

 3 3For the third row :      (0.4, 0.1, 2); (1, 5, 0)a F 

(0, 2,1)

(1, 5, 0)

(0.4, 0.1, 2)

We obtain the family M of 4x1x2  = 8 matrices 
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We have minimized  the  spectral radius over  the set of eight matrices 

Suppose we have  four rows for  each line 1, 2,  and  3.  

 

           In this case we have  4x4x4 = 64 matrices.  

 We choose one with the smallest leading eigenvalue.  

Curse of dimensionality  

50 15

If we have  50   and  just  TWO  lines in each uncertainty set, 

then the  total number of matrices  is  2 10 .

d 



One needs  to apply  some optimization technique  

to minimize  the spectral radius over a set of matrices 

  

Moreover,  the set of rows may be polyhedral 

(a subset of  defined by a system of linear  inequalities).d



Product  families  with row uncertainties 

V.Kozyakin  (2004) 

V.Blondel, Y.Nesterov (2009) 

Y.Nesterov,  V.P.  (2013)  

Applications: 

Leontief model  (mathematical economics) 

Structured population dynamics, mathematical ecology 

Spectral graph theory 

Asyncronouos systems  



Optimizing the spectral radius for product  families 

Studied in:   Y.Nesterov,  V.P.  (2013),  V.P. (2015)  

The  spectral simplex method  

Definition 2.  A  one-line correction, of  a matrix is  a  replacement  of  one of its lines.  
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The  spectral simplex method  

1Take an arbitrary matrix  .  

We have a matrix  and its leading eigenvector  0.   
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For strictly positive matrices, the spectral simplex method 

is well-defined, does not cycle, and finds the solution within finite

Theorem 

 time. 

 3. 

    



For  matrices, the spectral simplex method 

is well-defined, does not cycle, and finds the solut

Theorem 3. strictly po
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In many problems, the matrices are sparse.  In this case we are in trouble.   

The leading eigenvector  v  of  a matrix  A  may not be unique.   

The spectral radius is not strictly increasing with iteration,  

but just non-decreasing 

The  algorithm may cycle. 

1 2 2 {(0.5,  1,  0.5),  (0.5,  0.5,  1)},   {(0,  1,  0)},    Example    {(0,  0,  1 }4   ). F F F  
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For sparse matrices,  the algorithm cycles very often. 



Assume a nonnegative matrix A has a simple leading eigenvector 0, || || 1. 
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1If the initial matrix  of the spectral simplex method has a simple leading eigenvector, 

then all matrices in all iterations possess the same property, and the algorithm d
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1How to choose   to possess a unique leading eigenvector ?  A
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The numerical efficiency of the spectral simplex method 

100

For 100,   2,  we have  the 100-dimensional Boolean cube. 

The number of vertices is  2 .   However, the algorithm performs only 56  one-line corrections.

d n 

t  = 12 s. 

10 20For 10,   100,  the set M contains 100 =10  matrices. The algorithm performs 23 iterations.d n 

t  = 0.3 s. 

200For 100,   100,  the set M contains 10  matrices. The algorithm performs 213 iterations.d n 

t  = 40 s. 



The numerical efficiency of the spectral simplex method 



The classical simplex method  (for linear programming, G.Dantzig, 1947). 

( , ) max
   

( , ) , 1,...
LP problem:     

,i i

c x

a x b i N


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Step-by-step increasing of the objective function   ( , )

going  along the edges of the polyhedron  

                             { ( , )  ,    1,  ...,  }. i i

c x

G a x b i N  

In practice, converges extremely fast.  

G.Dantzig  believed that the number of steps is linear in  N and d.  

V.Klee and G.Minty constructed an example  w1 ith  2  iterations.972. N

In average, the number of iteration is indeed  linear in N and d  (S.Smale,  1983).  

What is the theoretical complexity of the Spectral simplex method ?  
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For a product family M of strictly positive matrices, 

there are constants  0,   (0,1) ,  such that 
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Corollary for the closest unstable matrix problem: 

Conclusion:  to make the matrix unstable one needs  

to change its elements by the same number in one column!  



The structure of the closest STABLE matrix is more complicated  

It can be found by the spectral simplex method.  

The spectral simplex method works equally well for both  

minimization and maximization problem.  



Applications:    

 

            Optimizing the spectral radius of a graph 



                                    Story 4  

 

                  Positive systems in the problems of  

           Mathematical Economy and Population 

Dynamics 



Applications:    

 

                            The Leontief model:  

        how to make the economy productive 



Wassily Wassilievich Leontief (1906 - 1999) 

Василий Васильевич  Леонтьев 

1906   born in the family of W.Leontief (from an old-believer Russian orthodox family) 

and  Genya Leontief (Becker) from a rich Jewish merchant family from Odessa.   

1924  Masters degree in Economics, University of Leningrad (St. Petersburg).  

Was persecuted and detained several times by Soviet authorities.  

1925  was allowed to leave Soviet Union    

1932 – 1975  affiliated  with  Harward,   from 1975  is  with  the New York University.  

1973  the Nobel Prize in Economics.    



The Leontief  input-output model  (1966,  Nobel Prize 1973)   

 

expresses inter-industry relationships  in linear algebraic terms.  

Suppose the economy has  sectors. 

The th sector produces  units of some single homogeneous good. 

To produce one unit it consumes  units from sector .

i
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d

i x

a j

In addition, each sector must leave  units of its 

The final d
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For every  1,  ...,  ,    we have the equality   

                                      
d

i i i j j

j

i d

x b a x



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Around 1949, Leontief used the primitive computer systems   at Harvard to model data 

provided by the U.S. Bureau of Labor Statistics .   

 

He divided  the U.S. economy into  d   = 500  sectors. 



1

                                      , 1,  ...,  .
d

i i i j j

j

x b a x i d


  

In the matrix form:       ( ) ,     ,     1,  ...,  :   i jA a i j d 

                                    (1)       x Ax b 

Definition 1.   The economy is productive  if it is able to provide any final demand. 

Equation  (1)  has  a nonnegative  solution   x   for  every  nonnegative  b.   

     The  economy is productive  if andTheore  only (W.Leontief  if   .m 6. (  ). )   1A 



Productivity of the economy  in  the  Leontief  model  

maxThe  economy is productive       ( ) 1. A 

maxBasically,  the smaller  ( ) the better. A

0

max(reducing    makes    smaller)     

The economy provides the necessary final demand  using less amount of resource
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k

xx A b
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
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
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maxWhat  to do if    ( ) 1?  A  maxor    ( ) is very close to one ?  A



1 2 3Ex We have three sectors,    ( , , ) is the value of ample the pr oduction5. .   x x x x

0.5 0.2 0.2

A  =  0 0.3 0.7  

0.5 0 0.6

 
 
 
 
 

max  ( ) 1 The economy is not produ c i   t veA  

1 11 12, 13

Suppose we have a choice between four technologies  producing  the first good. 

Each technology has its own requirement of resources  has its own row    ( , )  a a a a

* * *

A  =  0 0.3 0.7  

0.5 0 0.6

 
 
 
 
 

maxA  =  0 0.3 0.7      

0.5 0 0.

 The third  technology,    ( ) 0.988 the economy is product

6

i

0.6 0.1 0.

ve

2

A

 
 
 
 






1   (0.5, 0.2, 0.2); (0.4, 0.3, 0.2); (0.6, 0.1, 0.2); (0.55, 0.25, 0.15)a 

max   (0.5 , 0.2 , 0.2)  ( ) 1A 

max  (0.4 , 0.3 , 0.2)  ( ) 8 1.00A 

max  (0.6 , 0.1 , 0.2)  ( ) 8 0.98A 

max  (0.55 , 0.25 , 0.15)  ( ) 1 1.0 9A 
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November 1945 70th Anniversary: 1945–2015 

Patrick Holt Leslie (1900–1974) 

0. Intro: What are the ‘Matrix Population Models’? 

 
 

 
 

0 
0 



Hans Schneider (1927–2014) J. Math. Biol. 44, 450–462 (2002) 

0. Intro: What are the ‘Matrix Population Models’? 

 
 

 
 



Terminology:  Leslie(1945)  diag{r1,...,rn }  Lefkovitch(1965) 

     Lefkovitch             
  

. . . * * 
* . . . 

. . . 

* * 

* . 
. 
.  

. 
. 
.  
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 general 
 

 

     n     age  classes  

r1 r2 r3 rn-1 rn 

Projection Matrix: general case  
 

 
 

b2 

 1  n . . .  2  3  n-1 
s1 s2 sn-1 

b3 
bn-1 

bn 

 1  n . . .  2  3  n-1 . . . 
b2 

b3 
bn-1 

bn 

s1 s2 sn-1 
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bn-1 . . . 
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. . . 

. . . 

. . . 

. . . 
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«stage» 

. . . * * 

* 

. . . 

. . . 

irregular, “insuccessive” transitions 

. . . 
* * 

* 

. 
. 
.  

. 
. 
.  

⋱ 

r2 

rn 

r1 regressive transitions 

Tradition: L =   Transition                                          +            Fertility  

0 

0 
s1 

. . . 

0 

0 

0 0 

0 
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⋱ 

sn-1 

0 

0 . . . 

. . . 
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0 0 

. . . 

0 

0 

0 0 

0 

0 

0 
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0 . . . 

. . . 
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. . . 
0 
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b2 bn 0 bn-1 . . . 

s1 

* 
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   . . . 
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0 

s2 

. . . 

r2 

 . . . 

. . . 

r3 

⋱ ⋱ 

. 
. 
.  

sn-1 

* 

rn 

* 

. 
. 
.  

* 

Constraints:     Transition                                          +            Fertility  nonzero survival: 

matrix T  substochastic 

b2 + …+ bn-1 + bn > 0 

nonzero reproduction: 
0 < sj + rj + *j  ≤ 1, j = 1, …, n, 

matrix F  bounded 

33 



max maxLet A be a nonnegative matrix. How to verify that  1 without computing  Proble  m.    ?   

max  A function  f(A)  is an indiIndicator.  1   cator if     (  )   1.   f A   

22This  is equivalent to the property  , where  is the second largest 

REAL  eigenvalue.
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  

This property always holds for matrices of the form  A =  T + F, 

where T is a substochastic matrix,  F is a rank-one m

Theorem
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.  

x.   

2 maxIf  A is a rank-one correction of  T, and   A, T  0, Theor  then  ( )em (T).   .   A  

 Does the function  possess

the indicator property for projection ma

(D.Logofet, 2002). 

For some cases it was p
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roved by Logofe

 

t and Klochkova in 2004
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s ? 
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max

  If   is a rank-one correction of a matrix with 

spectral radius  1,  then the function 

possesses the indicator property, i.e.,

Corollary.

f(A) = det (A-I)  

 ( )  1     f(A)    1.    A

A

   



2 max

max

max

  For every matrix of the form      

where    we have   

If     in particular, if is substochastic, 

Corollary.   ,  

rank F =1, ( ) ( ).

 ( ) 1,     

                    

  then 

        ( )  

A T F

A T

T

A

T

 





 





 1     ( )  1 -  det  ( )   1.   f A I A   

max

Note that the projection matrix       is a one-line 

correction (since F has one nonzero line) of a substochastic matrix T, 

for which  ( )   1.  Therefore,

L T А

T

 



max

  For every projection matrix, the function   

possesses the indicator property

Theorem. ( )  det  ( - )  

 ( )  1     1 - det  ( )   1 ., i.    e.  ,  

f L L I

L I L



   



Thank you!  


