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Nonreversible Markov chain and process Monte Carlo methods

The aim of these lectures is twofold: (a) provide an overview of the construction of known
reversible and non-reversible Markov chain Monte Carlo algorithms and their continuous time
counterparts and (b) provide an overview of some theoretical results characterising their per-
formance, for example in large dimensional setups.

Olga Klopp (ESSEC Business School),
e-mail: kloppolga@math.cnrs.fr

Matrix Completion: old and new

Low-rank matrices play a fundamental role in statistics and machine Learning. In many sit-
uations one can not observe the matrix of interest directly nor fully sample it. Then, one faces
the problem of matrix completion from partial and noisy observations of a low-rank matrix or a
matrix that can be well approximated by a low-rank matrix. The aim of this mini-course is to
provide an overview of modern techniques for exploiting low-rank structure to perform matrix
recovery in these settings. We will discuss the algorithms most commonly used in practice, the
existing theoretical guarantees for these algorithms and some examples of practical applications.

Content

1. Introduction. Algorithms for Matrix Recovery.
2. Matrix LASSO. Non-commutative Bernstein inequality.
3. Confidence sets for the matrix completion problem.
4. One-bit matrix completion. Robust matrix completion.
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[4] A. Carpentier, O. Klopp, M. Löffler, and R. Nickl. Adaptive confidence sets for matrix
completion. Bernoulli, 24(4A): 2429 – 2460, 2018.
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How complex is a random picture

Complexity of a metric measure space may be expressed in terms of ”quantization (i.e.
discretization) error” telling how well it may be approximated in the average by a finite subset
called dictionary. After exposing some general theory and giving examples, we dwell on a recent
particular example studied by F. Aurzada (TU Darmstadt) and the lecturer.

Consider a random set (or ”picture”) in the unit cube of 𝑑-dimensional Euclidean space as
a union of balls centered at points of a Poissonian random field and having i.i.d. radii. Let 𝐾
be the minimal number of balls needed to reproduce the picture.

We study large deviation probabilities for 𝐾 and prove in some cases that for large 𝑛,
ln𝑃 (𝐾 > 𝑛) ∼ −𝐴𝑛 ln𝑛 where the constant 𝐴 may explicitly depend on dimension, on the dis-
tribution of radii, and on the norm under consideration. In many cases the problem of finding
the value of A remains open although some upper and lower bounds are available.

This asymptotics has natural corollaries in high dimensional quantization problems.

Stephane Mallat (College de France),
e-mail: stephane.mallat@ens.fr

Mathematics of Deep Convolutional Neural Networks

Deep neural networks obtain impressive results for image, sound and language recognition or
to adress complex problems in physics. They are partly responsible of the renewal of artificial
intelligence. Yet, we do not understand the underlying mathematics. This course will introduce
some important mathematical questions, partial results and open problems.



We will review the architecture of deep convolutional neural networks, the universal approx-
imation theorem for one-hidden layer networks and untractability of approximations in high
dimension. Deep neural network have remarkable high-dimensional approximation capabili-
ties over complex classes of functions, which seems to circumvent the curse of dimensionality.
Understanding the mathematics of these networks requires to understand high-dimensional reg-
ularities. Three elements play an important role: multiscale separations, groups of symmetries
and sparsity. We will show how deep neural networks can take advantage of such properties by
introducing wavelet transforms, invariant representations and sparse dictionary learning. This
will be related to the role of Relu non-linearities and filters in convolutional network.

We shall consider applications to unsupervised learning for the modelization of non-Gaussian
ergodic stationary processes such as fluid turbulences and for the modelization of complex non-
ergodic processes with autoencoders. We will also study applications to supervised learning for
image classification over large data bases such as ImageNet, and in quantum chemistry for the
regression of quantum molecular energies.

Denis Belomestny (Duisburg-Essen University, HSE University),
e-mail: denis.belomestny@uni-due.de

Variance-reduced Q-learning via martingale representations

In this talk we propose a novel regression-based approach for Q-learning. This approach
reduces the complexity of the Monte Carlo Q-learning algorithm and has an especially simple
form for Markov processes with known transition densities. We analyze the complexity of the
proposed approach in the case of both fixed and increasing numbers of periods. The method is
illustrated by several numerical examples.

Marco Cuturi (CREST, ENSAE),
e-mail: cuturi@google.com

Differentiable Ranks using Optimal Transport: The Sinkhorn CDF and Quantile Operator

We propose a framework to sort values that is algorithmically differentiable. We leverage the
fact that sorting can be seen as a particular instance of the optimal transport (OT) problem on
𝑅, from input values to a predefined array of sorted values (e.g. 1, 2, . . . , 𝑛 if the input array
has 𝑛 elements). Building upon this link, we propose generalized ranks, CDFs and quantile op-
erators by varying the size and weights of the target pre-sorted array. We recover differentiable
algorithms by adding to the OT problem an entropic regularization, and approximate it using
a few Sinkhorn iterations. We call these operators S-ranks, S-CDFs and S-quantiles, and use
them in various learning settings: we benchmark them against the recently proposed neuralsort
[Grover et al. 2019], propose applications to quantile regression and introduce differentiable
formulations of the top-𝑘 accuracy that deliver state-of-the art performance.

Arnak Dalalyan (CREST, ENSAE),
e-mail: arnak.dalalyan@ensae.fr

On sampling from a log-concave density using kinetic Langevin diffusions

Langevin diffusion processes and their discretizations are often used for sampling from a
target density. The most convenient framework for assessing the quality of such a sampling
scheme corresponds to smooth and strongly log-concave densities. The present talk focuses on
this framework and describes the behavior of Monte Carlo algorithms based on discretizations
of the kinetic Langevin diffusion. We first present the geometric mixing property of the kinetic



Langevin diffusion with a mixing rate that is, in the overdamped regime, optimal in terms
of its dependence on the condition number. We then use this result for obtaining improved
guarantees of sampling using the kinetic Langevin Monte Carlo method, when the quality of
sampling is measured by the Wasserstein distance. We also consider the situation where the
Hessian of the log-density of the target distribution is Lipschitz-continuous. In this case, we
introduce a new discretization of the kinetic Langevin diffusion and prove that this leads to a
substantial improvement of the upper bound on the sampling error measured in Wasserstein
distance. (joint work with L. Riou-Durand)

Alexander Gasnikov (HSE University, MIPT, IITP RAS),
e-mail: gasnikov@yandex.ru

Acceleration of Sinkhorn algorithm for optimal transportation problem and Iterative Bregman
Projection algorithm for Wasserstein barycenter problem

In our recent work arXiv:1906.03622 Accelerated alternating minimization methods was pro-
posed. This method is primal-dual and converges like fast gradient method for smooth convex
problems in general case. But typically, in practice it converges much faster due to the pos-
sibility of exact auxiliary minimizations. In this talk we will demonstrate how to apply this
method for two problems: dual problem for Entropy regularized Optimal Transportation prob-
lem arXiv:1802.04367 and dual problem to Entropy regularized Wasserstein barycenter problem
arXiv:1901.08686.

Friedrich Götze (Bielefeld University),
e-mail: goetze@math.uni-bielefeld.de

Concentration of Measure and Entropic Convergence

We study ’higher’ order concentration of measure bounds for functionals on the sphere, Eu-
clidean and discrete spaces. These general results will be applied to the distribution of weighted
sums with dependencies and to distribution questions for spin systems and unbounded func-
tionals of polynomial type. Furthermore we discuss the entropic convergence to the Poisson law
measured in relative entropy based divergences. This includes the full hierarchy of Renyi/Tsallis
type divergences.

Ildar Ibragimov (PDMI RAS),
e-mail: ibr32@pdmi.ras.ru

On the estimation of intensity density functions of Poisson processes

The aim of this talk is to present some results about non-parametric estimation of the inten-
sity density function of a Poisson process. We consider the following problem. We are observing
a Poisson process 𝑋𝜀(𝑡) (a Poisson random measure 𝑋𝜀(𝐴)) on an interval [𝑎, 𝑏] (on a region 𝐺).
The non-homogeneous process 𝑋𝜀(𝑡) has the intensity measure 𝜖−1Λ where 𝜀 > 0 is a known
small parameter and Λ is an unknown measure. It is supposed that the measure Λ is absolutely
continuous with respect to the Lebesgue measure and has the density (the intensity density)
function 𝜆(𝑡) and that the unknown density 𝜆 belongs to a known class 𝐹 of functions. The
basic problem is to estimate 𝜆 on the base of the observations 𝑋𝜀. Denote ||.||𝑝 the norm in
𝐿𝑝(𝑎, 𝑏). Set

∆𝑝(𝜀, 𝐹 ) = ∆𝑝(𝜀) = inf supE𝜆||�̂�− 𝜆||𝑝



where sup is taken over all 𝜆 ∈ 𝐹 and inf is taken over all possible estimates �̂� of 𝜆. In the
talk we study the asymptotic behavior of estimates when 𝜀 → 0 and in particular the rate of
convergence of ∆ to zero.

The rate depends on 𝐹 . We study the question of dependence of the rate on characteristics of
”massivity” of 𝐹 , on the 𝜀-entropy of 𝐹 , its Kolmogorov diameters or some other characteristics.

Bing-Yi Jing (HKUST),
e-mail: majing@ust.hk

Recommender system incorporating social network information

We propose the so-called NetRec method in recommender system by incorporating the net-
work information into collaborative filtering (CF). This results in a sharper error bound than
previous literature under reasonable assumptions. It is also shown that the combination of
the network-related penalty and the nuclear norm penalty gives better estimates than those
achieved by any of them alone. The method has been shown to work well in simulations and
some real data sets on Yelp.

Alexander Kolesnikov (HSE University),
e-mail: sascha77@mail.ru

Convexity and transportation: inequalities, barycenters, analysis on Wiener space

We present some new and classical results connecting several areas of research: gaussian
analysis (in finite and infinite dimensions), inequalities for convex bodies, transportation in-
equalities. In particular, we discuss applications of optimal transportation to Minkowski-type
problems and some new forms of the Blaschke-Santalo inequality. In addition, we present some
results and open problems on geodesic barycenters in Wiener space.

Alexey Kroshnin (HSE University, IITP),
e-mail: akroshnin@hse.ru

Shape-based domain adaptation via optimal transportation

Domain adaptation problem aims at learning a well performing model, trained on a source
data 𝑆 (images, vectors, e.t.c), applied then to different (but related) target sample 𝑇 . Aside
from being attractive due to obvious practical utility, the setting is challenging from theoretical
point of view. In this work we introduce a novel approach to supervised domain adaptation
consisting in a class-dependent fitting based on ideas from optimal transportation (OT) theory
which considers 𝑆 and 𝑇 as two mixtures of distributions. A parametrized OT distance is
used as a fidelity measure between 𝑆 and 𝑇 , providing a toolbox for modelling of possibly
independent perturbations of mixture components.

Axel Munk (Universität Göttingen),
e-mail: amunk1@gwdg.de

Empirical Optimal Transport: Inference, Algorithms, Applications

We discuss recent developments in statistical data analysis based on empirical optimal trans-
port (EOT). Fundamental are limit laws for EOT plans and distances on finite and discrete
spaces. These are characterized by dual optimal transport problems over a gaussian process.
Our proofs are based on a combination of sensitivity analysis from convex optimization and
discrete empirical process theory. We examine an upper bound for such limiting distributions
based on a spanning tree approximation which can be computed explicitly. This can be used for



statistical inference, fast simulation, and for fast randomized computation of optimal transport
in large scale data applications at pre-specified computational cost as it provides error bounds
to balance computational and statistical error. Our methodology is illustrated in computer
experiments and on biological data from super-resolution cell microscopy. Finally, this is con-
trasted and compared with recent results on regularized empirical optimal transport. This is
based on joint work with M. Klatt, M. Sommerfeld, C. Tameling and Y. Zemel.

Salem Said (CNRS – Université de Bordeaux),
e-mail: salem.said@u-bordeaux.fr

Riemannian barycentres of Gibbs distributions : new results on concentration and convexity

Let 𝑃 be a probability distribution on a Riemannian manifold 𝑀 . A Riemannian barycentre
of 𝑃 is any point in 𝑀 , which achieves the global minimum of the so-called variance function

ℰ(𝑥) =
1

2

∫︁
𝑀

𝑑2(𝑥, 𝑦)𝑃 (𝑑𝑦) for 𝑥 ∈ 𝑀

where 𝑑(𝑥, 𝑦) denotes Riemannian distance. In the special case where 𝑀 is a Euclidean space,
𝑃 has one and only one barycentre, which is identical to the expectation of 𝑃 . Making this
observation, in 1948, Fréchet proposed the concept of barycentre as a generalisation of the con-
cept of expectation, to probability distributions on Riemannian manifolds (or even on general
metric spaces).

Fast-forward to our century, a bit more than fifteen years ago, this old idea was resur-
rected, and applied to a huge number of recent problems in data science. Today, the so-called
Riemannian barycentre (or Fréchet mean) is the workhorse of data analysis, when it comes to
data in Riemannian manifolds.

So much success should seem dubious, to the expert in Riemannian geometry : even in the
most elementary situations, the variance function ℰ(𝑥) is non-differentiable, non-convex, and
has multiple local or even global minima. Thus, in order to exploit the Riemannian barycentre,
as a tool for data analysis, it is very important to understand its differentiability, convexity,
uniqueness, and other properties. An important contribution, in this respect, was made by
Afsari, in 2010, who proved that, as long as 𝑃 is supported inside a convex geodesic ball in 𝑀 ,
the Riemannian barycentre of 𝑃 is unique and belongs to this geodesic ball.

This result is optimal, since many elementary examples show the barycentre of 𝑃 can fail to
be unique, if 𝑃 is not supported inside a convex geodesic ball. However, it does not tell us what
happens in certain important cases, where 𝑃 is not supported inside, but merely concentrated
on a convex geodesic ball. In particular, it does not say anything about the case where 𝑃 = 𝑃𝑇

is a Gibbs distribution

𝑃𝑇 (𝑑𝑦) ∝ exp

[︂
−𝑈(𝑦)

𝑇

]︂
𝑣(𝑑𝑦) (𝑣 denotes Riemannian volume )

My presentation will uncover some new results, which decide the properties of concentration,
differentiability, convexity, and uniqueness of the Riemannian barycentre of a Gibbs distribution
𝑃𝑇 , assuming the function 𝑈 has a unique global minimum 𝑦* ∈ 𝑀 . In particular, these
new results imply the following theorem : if 𝑀 is a simply-connected compact Riemannian
symmetric space, with convexity radius 𝑟𝑐𝑥 , then for all 𝛿 < 1

2
𝑟𝑐𝑥 there exists 𝑇𝛿 such that 𝑇 < 𝑇𝛿

implies the Riemannian barycentre of 𝑃𝑇 is unique and belongs to the geodesic ball 𝐵(𝑦*, 𝛿).
Moreover, if 𝑈 is invariant by geodesic symmetry about 𝑦*, then this Riemannian barycentre



is identical to the global minimum 𝑦*. Remarkably, this does not require the function 𝑈 to be
smooth.

This theoretical result comes with an applied reward. The problem of finding the global
minimum of a non-smooth function 𝑈 becomes equivalent to the problem of computing the
Riemannian barycentre of the Gibbs distribution 𝑃𝑇 (provided 𝑇 is chosen correctly). This
gives rise to an original algorithm for black-box optimisation, based on the idea of recursive
computation of the barycentre of 𝑃𝑇 , using samples generated from a Riemannian MCMC
approximation.

The performance of this algorithm, which seems quite promising, will be illustrated with
two computer experiments. A theoretical understanding of this performance raises several
interesting questions, which remain open in the literature.

Eugene Stepanov (PDMI RAS),
e-mail: stepanov.eugene@gmail.com

A tour of location problems: from optimal to random

The classical location (𝑘-median) problem is that of placing 𝑘 facilities modeled by points
in an optimal way in the given region. We will discuss several ways of placing points, namely
globally optimally, optimally one-by-one, and randomly, evaluating each time the asymptotic
behavior of the average distance functional (or, equivalently, the Wasserstein distance to the
reference measure).

Alexandra Suvorikova (University of Potsdam),
e-mail: a.suvorikova@gmail.com

On some geometrical intuition on multiplier bootstrap in Bures-Wasserstein space

In this talk we first briefly introduce the concept of Bures-Wasserstein (BW) barycenters of
hermitian finite-dimensional matrices, and explain how they can be used for investigation of
geometry of DNA molecules modelled as a union of rigid bodies. The main objective of the
talk is to present an extension of multiplier bootstrapping technique to BW space, which is
then used for construction of non-asymptotic confidence sets for BW barycenters, and explain
the underlying geometrical intuition behind the procedure.

Lukas Szpruch (Alan Turing Institute),
e-mail: L.Szpruch@ed.ac.uk

Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks

We present a probabilistic analysis of the long-time behaviour of the nonlocal, diffusive
equations with a gradient flow structure in 2-Wasserstein metri. Our work is motivated by
a desire to provide a theoretical underpinning for the convergence of stochastic gradient type
algorithms widely used for non-convex learning tasks such as training of deep neural networks.
The key insight is that the certain class of the finite dimensional non-convex problems becomes
convex when lifted to infinite dimensional space of measures. We leverage this observation and
show that the corresponding energy functional defined on the space of probability measures
has a unique minimiser which can be characterised by a first order condition using the notion
of linear functional derivative. Next, we show that the flow of marginal laws induced by
the Mean-Field Langevin Dynamics (MFLD) converges to the stationary distribution which is
exactly the minimiser of the energy functional. We show that this convergence is exponential
under conditions that are satisfied for highly regularised learning tasks. At the heart of our



analysis is a pathwise perspective on Otto calculus used in gradient flow literature which is of
independent interest. Our proof of convergence to stationary probability measure is novel and
it relies on a generalisation of LaSalle’s invariance principle. Importantly we do not assume that
interaction potential of MFLD is of convolution type nor that has any particular symmetric
structure. This is critical for applications. Finally, we show that the error between finite
dimensional optimisation problem and its infinite dimensional limit is of order one over the
number of parameters.

Alexander Tsybakov (CREST, ENSAE),
e-mail: Alexandre.Tsybakov@ensae.fr

Estimation of functionals in sparse vector model

Assume that we have the observations 𝑦𝑖 = 𝜃𝑖 +𝜀𝜉𝑖, 𝑖 = 1, . . . , 𝑑, where 𝜃 = (𝜃1, . . . , 𝜃𝑑) ∈ R𝑑

is a vector of unknown parameters, 𝜀 > 0, and 𝜉𝑖 are independent identically distributed (i.i.d.)
random variables. Assume also that 𝜃 belongs to the class 𝐵0(𝑠) of all 𝑠-sparse vectors, that is,
vectors in R𝑑 with not more than 𝑠 non-zero components, 𝑠 ∈ {1, . . . , 𝑑}. We first consider the

problem of estimation of ‖𝜃‖𝛾 =
(︁∑︀𝑑

𝑖=1 |𝜃𝑖|𝛾
)︁1/𝛾

, 𝛾 > 0, based on observations 𝑦 = (𝑦1, . . . , 𝑦𝑑).

We prove that, if 𝜀 > 0 is known and 𝜉𝑖 are i.i.d. standard Gaussian variables, the minimax
risk for estimation of ‖𝜃‖𝛾 under the squared loss on the class 𝐵0(𝑠) satisfies

inf
𝑇

sup
𝜃∈𝐵0(𝑠)

E𝜃[(𝑇 − ‖𝜃‖𝛾)2/𝜀2] ≍

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑠2/𝛾log(1 + 𝑑/𝑠2), if 𝑠 ≤

√
𝑑,

𝑠2/𝛾

log(1 + 𝑠2/𝑑)
, if 𝑠 >

√
𝑑 and 𝛾 ̸∈ 𝐸,

𝑑1/𝛾, if 𝑠 >
√
𝑑 and 𝛾 ∈ 𝐸,

where 𝐸 is the set of all even integers, and E𝜃 denotes the expectation with respect to the
distribution of 𝑦, and inf𝑇 is the infimum over all estimators. We also construct estimators
achieving this minimax rate.

Next, for the same sparse vector model, when the noise is not necessarily Gaussian and 𝜀 is
not necessarily known, we consider adaptive estimation of 𝜃, of the norm ‖𝜃‖2 and of the noise
variance 𝜀2. We construct adaptive estimators and establish the optimal rates when adaptation
is considered with respect to the triplet ”noise level - noise distribution - sparsity”. We consider
classes of noise distributions with polynomially and exponentially decreasing tails as well as
the case of Gaussian noise. The obtained rates turn out to be different from the minimax
non-adaptive rates when the triplet is known. A crucial issue is the ignorance of the noise
variance. Moreover, knowing or not knowing the noise distribution can also influence the rate.
For example, the rates of estimation of the noise variance can differ depending on whether the
noise is Gaussian or sub-Gaussian without a precise knowledge of the distribution. Estimation
of noise variance in our setting can be viewed as an adaptive variant of robust estimation of
scale in the contamination model, where instead of fixing the nominal distribution in advance,
we assume that it belongs to some class of distributions.

Dmitry Zaporozhets (PDMI RAS),
e-mail: zap1979@gmail.com

Generalized Busemann inequality

Based on a joint work with Alexander Litvak.



We will discuss a result that generalizes both the Busemann intersection inequality and the
Busemann random simplex inequality.

Nikita Zhivotovskiy (Google, HSE University),
e-mail: nzhivotovskiy@hse.ru

Noise sensitivity of the top eigenvector of random matrices

In this talk we discuss the noise sensitivity of the top eigenvector of a Wigner matrix in the
following sense. Let 𝑣 be the top eigenvector of an 𝑁 × 𝑁 Wigner matrix. Suppose that k
randomly chosen entries of the matrix are resampled, resulting in another realization of the
Wigner matrix with top eigenvector 𝑢. We prove that when 𝑘 is much greater than 𝑁5/3, then
𝑢 is almost orthogonal to 𝑣, and this threshold is sharp. This result is closely related to a
particular case of superconcentration phenomenon.

Based on a joint work Charles Bordenave and Gabor Lugosi


