Об автоморфизмах тотального матричного графа

Валентин Промыслов

Факультет компьютерных наук ВШЭ

Научная школа международной лаборатории теоретической информатики 27 апреля 2024 г.

Тотальный и регулярный графы кольца матриц

Определение

Тотальным графом кольца $n \times n$ матриц над полем $\mathbb F$ называется граф $\mathcal T_n(\mathbb F)$ с множеством вершин $M_n(\mathbb F)$ такой, что различные матрицы $A,B\in GL_n(\mathbb F)$ соединены ребром, если и только если $\det(A+B)=0$.

Регулярным графом кольца матриц $\Gamma_n(\mathbb{F})$ называется подграф $\mathcal{T}_n(\mathbb{F})$, порожденный множеством вершин $GL_n(\mathbb{F})$.

В 2009 году математиками С. Акбари, М. Джамаали и С. Сеед Факхари было установлено, что если характеристика поля $\mathbb F$ не равна 2, то кликовое число регулярного графа конечно:

$$\omega(\Gamma_n(\mathbb{F})) \leqslant \sum_{k=0}^n k! \binom{n}{k}^2 - n! + 1.$$

S. Akbari, M. Jamaali, S.A. Seyed Fakhari. The clique numbers of regular graphs of matrix algebras are finite, *Linear Algebra and its Applications*, 431 (2009) 1715–1718.

Тотальный и регулярный графы кольца матриц

Определение

Тотальным графом кольца $n \times n$ матриц над полем $\mathbb F$ называется граф $\mathcal T_n(\mathbb F)$ с множеством вершин $M_n(\mathbb F)$ такой, что различные матрицы $A,B\in GL_n(\mathbb F)$ соединены ребром, если и только если $\det(A+B)=0$.

Регулярным графом кольца матриц $\Gamma_n(\mathbb{F})$ называется подграф $\mathcal{T}_n(\mathbb{F})$, порожденный множеством вершин $GL_n(\mathbb{F})$.

В 2009 году математиками С. Акбари, М. Джамаали и С. Сеед Факхари было установлено, что если характеристика поля $\mathbb F$ не равна 2, то кликовое число регулярного графа конечно:

$$\omega(\Gamma_n(\mathbb{F})) \leqslant \sum_{k=0}^n k! \binom{n}{k}^2 - n! + 1.$$

S. Akbari, M. Jamaali, S.A. Seyed Fakhari. The clique numbers of regular graphs of matrix algebras are finite, *Linear Algebra and its Applications*, 431 (2009) 1715–1718.

Автоморфизмы тотального графа

Определение

Пусть G = (V,E) — граф. Автоморфизм графа G — биекция $T\colon V o V$ такая, что

$$\{v_1, v_2\} \in E \quad \iff \quad \{T(v_1), T(v_2)\} \in E.$$

Таким образом, автоморфизм тотального графа $\mathcal{T}_n(\mathbb{F})$ — это биекция $T\colon M_n(\mathbb{F})\to M_n(\mathbb{F})$, удовлетворяющая условию: для различных $A,B\in M_n(\mathbb{F})$

$$\det(A+B) = 0 \quad \iff \quad \det(T(A) + T(B)) = 0.$$

Автоморфизмы тотального графа — случай 2 х 2

Zhou, J., Wong, D., Ma, X., Automorphism group of the total graph over a matrix ring, Linear and Multilinear Algebra 2017.

Теорема (Джоу-Вонг-Ма, 2017)

При n=2 произвольный автоморфизм T графа $\mathcal{T}_2(\mathbb{F}_q)$ для конечного поля \mathbb{F}_q имеет вид:

• при $\operatorname{char} \mathbb{F}_q \neq 2$

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = P\begin{pmatrix} \sigma(a) & \sigma(b) \\ \sigma(c) & \sigma(d) \end{pmatrix}Q \quad \text{или} \quad T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = P\begin{pmatrix} \sigma(a) & \sigma(c) \\ \sigma(b) & \sigma(d) \end{pmatrix}Q,$$

• при $\operatorname{char} \mathbb{F}_q = 2$

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = P\begin{pmatrix} \sigma(a) & \sigma(b) \\ \sigma(c) & \sigma(d) \end{pmatrix}Q + X \quad \text{или} \quad T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = P\begin{pmatrix} \sigma(a) & \sigma(c) \\ \sigma(b) & \sigma(d) \end{pmatrix}Q + X,$$

где $P,Q\in GL_2(\mathbb{F}_q)$, $X\in M_2(\mathbb{F}_q)$, а σ — автоморфизм поля \mathbb{F}_q .

Гипотеза

Гипотеза

 E сли $\mathrm{char}\,\mathbb{F}
eq 2$, то любой автоморфизм T графа $\mathcal{T}_n(\mathbb{F})$ при $n\geqslant 2$ имеет вид:

$$T(A) = PA^{\sigma}Q$$
 для всех $A \in M_n(\mathbb{F})$

или

$$T(A) = P(A^t)^{\sigma}Q$$
 для всех $A \in M_n(\mathbb{F}),$

где $P,Q\in GL_n(\mathbb{F})$, а σ — автоморфизм поля \mathbb{F} (под A^{σ} понимается поэлементное применение σ к элементам матрицы A).

Гипотеза Теорема

Теорема

Eсли $\operatorname{char} \mathbb{F} \neq 2$, то любой автоморфизм T графа $\mathcal{T}_n(\mathbb{F})$ при $n \geqslant 2$ имеет вид:

$$T(A) = PA^{\sigma}Q$$
 для всех $A \in M_n(\mathbb{F})$

или

$$T(A) = P(A^t)^{\sigma}Q$$
 для всех $A \in M_n(\mathbb{F}),$

где $P,Q \in GL_n(\mathbb{F})$, а σ — автоморфизм поля \mathbb{F} .

Идея доказательства

Отображения, сохраняющие вырожденность суммы

Теорема (Гутарман-Костара-Максаев-П., 2023)

Пусть $\operatorname{char} \mathbb{F} \neq 2$ и $\varphi \colon M_n \to M_n$ — такое биективное отображение, что для любых двух матриц $A, B \in M_n$ выполнено условие

$$A+B$$
 вырождена $\iff \varphi(A)+\varphi(B)$ вырождена.

Тогда найдутся невырожденные матрицы $P,Q\in M_n$ такие, что либо

$$\varphi(A) = PA^{\tau}Q, \quad (A \in M_n),$$

любо

$$\varphi(A) = P(A^{\tau})^t Q, \quad (A \in M_n),$$

для некоторого автоморфизма au поля \mathbb{F} .

Идея доказательства

Теорема Хуа

L.K. Hua, A theorem on matrices over a sfield and its applications, J. Chinese Math. Soc. (N.S) 1951.

Теорема (Хуа, 1951)

Пусть $\varphi\colon M_n(\mathbb{F}) o M_n(\mathbb{F})$, $n\geqslant 2$, такая биекция, что для всех $A,B\in M_n(\mathbb{F})$,

$$\operatorname{rk}(A - B) = 1 \iff \operatorname{rk}(\varphi(A) - \varphi(B)) = 1.$$

Тогда найдутся такие $P,Q\in GL_n$, $R\in M_n(\mathbb{F})$ и $\tau\in \operatorname{Aut}(\mathbb{F})$, что

$$\varphi(A) = PA^{\tau}Q + R, \quad A \in M_n(\mathbb{F}),$$

или

$$\varphi(A) = P(A^{\tau})^t Q + R, \quad A \in M_n(\mathbb{F}).$$

Идея доказательства

Множество общих соседей

- ullet Для $Y\in M_n$ обозначим через $\mathcal{N}(Y)=\{S\in M_n\,|\,\det(S+Y)=0\}.$
- ullet Для непустого множества $\mathcal{Y}\subseteq M_n$, обозначим через $\mathcal{N}(\mathcal{Y})=\bigcap_{Y\in\mathcal{Y}}\mathcal{N}(Y).$
- ullet Для различных $A,B\in M_n$ обозначим через $\ell(A,B)$ прямую в M_n , проходящую через A и B, т. е., $\ell(A,B)=\{A+\mu(B-A)\,|\,\mu\in\mathbb{F}\}.$

Лемма

Пусть $A, B \in M_n$ различны. Тогда

$$\mathcal{N}(\mathcal{N}(\{A,B\})) = egin{cases} \{A,B\}, & \text{ если } \mathrm{rk}(A-B) \geqslant 2; \\ \ell(A,B), & \text{ если } \mathrm{rk}(A-B) = 1. \end{cases}$$

Множество общих соседей

Предложение

Пусть V векторное пространство над \mathbb{F} , и $\mathcal{A},\mathcal{B}\colon V\to V$ линейные операторы такие, что ленейная независимость $\{x,y\}\subseteq V$ влечет линейную зависимость $\{\mathcal{A}x,\mathcal{B}y\}$. Тогда или $\mathcal{A}=0$, или $\mathcal{B}=0$, или $\mathrm{Im}\,\mathcal{A}=\mathrm{Im}\,\mathcal{B}$ и является подпространством размерности 1.

H. Havlicek, P. Semrl, From geometry to invertibility preservers, Studia Math., 174 (2006), pp. 99-109.

Лемма

Пусть $A,B\in M_n$ две различные матрицы, и пусть $X\in \mathcal{N}(\mathcal{N}(\{A,B\}))$. Тогда для всех линейно независимых векторов $x,y\in \mathbb{F}^n$, векторы (A-X)x и (B-X)y линейно зависимы \mathbb{F}^n .

Множество общих соседей

Лемма

Пусть $A,B\in M_n$ различны. Тогда

$$\mathcal{N}(\mathcal{N}(\{A,B\})) = \{A,B\}, \quad$$
 если $\mathrm{rk}(A-B) \geqslant 2;$

$$\mathcal{N}(\mathcal{N}(\{A,B\})) \supseteq \ell(A,B)$$
, если $\operatorname{rk}(A-B) = 1$.

Отображения, сохраняющие вырожденность суммы

Теорема (Гутарман-Костара-Максаев-П., 2023)

Пусть $\operatorname{char} \mathbb{F} \neq 2$ и $\varphi \colon M_n \to M_n$ — такое биективное отображение, что для любых двух матриц $A, B \in M_n$ выполнено условие

$$A+B$$
 вырождена $\iff \varphi(A)+\varphi(B)$ вырождена.

Тогда найдутся невырожденные матрицы $P,Q\in M_n$ такие, что либо

$$\varphi(A) = PA^{\tau}Q, \quad (A \in M_n),$$

любо

$$\varphi(A) = P(A^{\tau})^t Q, \quad (A \in M_n),$$

для некоторого автоморфизма au поля \mathbb{F} .

Сохраннение невырожденных матриц — конечный случай

Утверждение

Условие
$$T(O)=O$$
 влечет $T(\Omega_n)=\Omega_n.$

Предложение

Пусть $\mathbb F$ конечно, $A\in M_n$. Тогда

$$\deg A = egin{cases} |\Omega_n|, & ext{ если } A \in GL_n, \ |\Omega_n|-1, & ext{ если } A \in \Omega_n. \end{cases}$$

Сохраннение невырожденных матриц — бесконечный случай

Предложение

Пусть бесконечно. Тогда:

- lacktriangle в любой бесконечной клике ${\mathcal W}$ лишь конечное число вершин не является соседями O.
- $m{0}$ для каждой $O \neq A \in M_n$ найдется такая бесконечная клика $\mathcal W$ в $\mathcal T_n(\mathbb F)$, что из нее не идет ни одного ребра в A.

Следствие

$$T(GL_n) = GL_n$$
 u $T(\Omega_n) = \Omega_n$.

Теорема об автоморфизмах тотального графа

Теорема (Гутарман-Костара-Максаев-П., 2023)

 $\operatorname{\it Ec}$ ли $\operatorname{char} \mathbb{F}
eq 2$, то любой автоморфизм T графа $\mathcal{T}_n(\mathbb{F})$ при $n\geqslant 2$ имеет вид:

$$T(A) = PA^{\sigma}Q$$
 для всех $A \in M_n(\mathbb{F})$

или

$$T(A) = P(A^t)^{\sigma}Q$$
 для всех $A \in M_n(\mathbb{F}),$

где $P,Q\in GL_n(\mathbb{F})$, а σ — автоморфизм поля \mathbb{F} .