• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Мероприятия

Семинар НУЛ LAMBDA и ПГ быстрой симуляции TPC MPD "Generating muonic force carriers events with classical and quantum neural networks"

Мероприятие завершено

17 января в 14:40 состоится семинар НУЛ методов анализа больших данных и ПГ разработки быстрой симуляции трекера TPC эксперимента MPD методами глубокого обучения. С докладом "Generating muonic force carriers events with classical and quantum neural networks" выступят Oriel Orphee Moira Kiss (Universite de Geneve) и Tigran Ramazyan (NRU HSE).

Место проведения: онлайн, MS Teams (ссылка).
Язык мероприятия: английский.

Аннотация: Generative models (GM) are promising applications for near-term quantum computers due to the probabilistic nature of quantum mechanics. This work compares a classical conditional generative adversarial network (C-GAN) approach with a Born machine while addressing their strengths and limitations to generate muonic force carriers (MFCs) events. The former uses a neural network as a discriminator to train the generator, while the latter takes advantage of the stochastic nature of measurements in quantum mechanics to generate samples. We consider a muon fixed-target collision between muons produced at the high-energy collisions of the LHC and the detector material of the ForwArd Search ExpeRiment (FASER) or the ATLAS calorimeter. In the ATLAS case, independent muon measurements performed by the inner detector (ID) and muon system (MS) can help observe new force carriers coupled to muons, which are usually not detected. In the FASER experiment, the high resolution of the tungsten/emulsion detector is used to measure the muons trajectories and energies.

We will first present the C-GAN, then introduce quantum machine learning, give an overview of the challenges and potential of the field as well as our results.