• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Семинары

Часто задаваемые вопросы

Время/место проведения семинара. Регистрация внешних слушателей

Семинар проводится каждую пятницу с 18:10 до 19:30 по адресу Покровский бульвар, 11, аудитория R 305.

Студентам, преподавателям и сотрудникам вход свободный.
Для заказа разовых пропусков просьба обращаться к менеджеру лаборатории Жеребцовой Ксении по адресу kzherebczova@hse.ru

20.03 Гиперболические нейронные сети

Докладчик Максим Кочуров, студент 2 курса магистерской программы Сколтеха «Науки о данных»

Аннотация. В докладе будет рассмотрено применение гиперболической геометрии к задачам машинного обучения. Мы обсудим, когда от гиперболического пространства есть польза, когда нет, и как работать с ним в контексте нейронных сетей. Доклад будет охватывать такие задачи, как представления для графов, NLP, работа с изображениями. Будет приведен обзор статей и результатов, отвечающих на вопрос: когда и чем может быть полезна геометрия Лобачевского в машинном обучении.

13.03 Обзор методов оптимизации на многообразиях

Докладчик Сергей Козлуков, студент 2 курса совместной магистерской программы Сколтеха и ВШЭ «Статистическая теория обучения»

Аннотация. В докладе обсуждается оптимизация на многообразиях с точки зрения задач глубокого обучения, в частности обучения неевклидовых представлений.

Конкретно, кратко рассматривается Риманов градиентный спуск, обсуждается статья Octavian Ganea и Gary Becigneul, "Adaptive Riemannian Optimization Methods", обобщающая адаптивные схемы оптимизации на случай product manifold.

06.03 Теория вложенных графов в приложении к manifold learning

Докладчик Максим Бекетов, выпускник МФТИ и Сколтеха, сотрудник Archeads Inc

Аннотация. Задача manifold learning состоит в том, чтобы, имея (достаточно большое) облако точек, сэмплированных с некоторого многообразия (вложенного в объемлющее пространство), восстановить это многообразие. Два самых популярных подхода к этой задаче – персистентные гомологии и анализ лапласианов графов – со своими преимуществами и недостатками, работают в общем случае. Докладчик расскажет про другой, недавний и довольно несложный подход, работающий в частном случае, когда искомое многообразие двумерно: вкратце, нужно приблизить плоскостями окрестности точек-представителей из данного облака и понять, как эти окрестности “склеены” между собой. В последнем нам помогут инструменты теории вложенных (в поверхности) графов, а именно rotation systems – циклические порядки вложений ребер, инцидентных вершине. Максим напомнит классификацию двумерных многообразий, а также геометрический смысл SVD-разложения, потому предварительных знаний не потребуется; и покажет результаты численных экспериментов авторов метода (код есть в открытом доступе).

Стоит отметить, что обобщения данного метода на многообразия более высоких размерностей пока нет – докладчик расскажет, почему этого, кажется, не всегда можно сделать уже для размерности три.

28.02 Топологические методы в робототехнике: задачи и алгоритмы

Докладчик -Анастасия Варава (Postdoctoral researcher) и Владислав Полянский (PhD student), KTH Royal Institute of Technology (Стокгольм, Швеция)

Аннотация. Понятие конфигурационного пространства является одним из ключевых в формализации многих задач робототехники. Простые топологические свойства конфигурационных пространств, такие как линейная связность, компактность, односвязность, играют важную роль в планировании движения роботов. При разработке прикладных алгоритмов важно учитывать такие особенности этой области как большие объемы и плохое качество входных данных, необходимость принимать решения в реальном времени и гарантировать безопасность действий робота для окружающей среды и пользователей.

В этом докладе будут рассмотрены некоторые вычислительные задачи, возникающие в прикладных сценариях: аппроксимация многомерных конфигурационных пространств, восстановление их линейно-связных компонент и кластеризация путей в двумерных пространствах. Также докладчики представят некоторые алгоритмы для решения этих задач, основанные на методах вычислительной геометрии и топологии.

Во второй части доклада будет представлен новый алгоритм, позволяющий аппроксимировать диаграммы Вороного и проводить анализ в триангуляциях Делоне в многомерных пространствах без их полного явного построения. В число возможных приложений этого алгоритма входит вычисление конфигурационных пространств для дальнейшего изучения их топологических свойств.

21.02 Магнитудные функции и магнитудные гомологии

Докладчик -Владислав Черепанов, аспирант мехмата МГУ, научный сотрудник лаборатории

Аннотация. В докладе будет введено понятие магнитудной функции метрического пространства на основе работ Т.Лейнстера. Эта функция позволяет определить объем компактного подмножества евклидова пространства, а в случае графов - кодирует нетривиальную комбинаторную информацию. Будут сформулированы основные свойства магнитудных функций и разобраны показательные примеры, объясняющие, какие именно характеристики метрического пространства эти функции позволяют улавливать.

Далее будут определены магнитудные гомологии метрического пространства. Оказывается, что равенство нулю первых магнитудных гомологий является критерием выпуклости компакта в евклидовом пространстве. Определенная с помощью магнитудных гомологий эйлерова характеристика метрического пространства оказывается формально равна магнитудной функции. Таким образом, магнитудные гомологии можно рассматривать как категорификацию магнитудной функции. Если позволит время, разберем общее понятие магнитуды обогащенной категории и обсудим его свойства. 

13.02 Открытые задачи в песочных моделях

Докладчик - Никита Сергеевич Калинин, доцент департамента математики НИУ ВШЭ Санкт-Петербург, старший научный сотрудник Международной лаборатории теории игр и принятия решений

Аннотация. Рассмотрим граф, в каждой вершине которого находится целое неотрицательное число песчинок. Назовём обвалом следующую операцию: если в некоторой вершине число песчинок больше или равно её степени, переместим из этой вершины по одной песчинке в каждого из её соседей. Если граф конечный и связный, в нём есть стоки (то есть вершины, где попадающий туда песок исчезает), то любая последовательность обвалов приводит к стабильному состоянию системы: то есть к состоянию, где невозможно сделать обвал ни в одной вершине.

Песочную модель определили несколько раз в разных контекстах, но наибольшую известность она приобрела как модель так называемой самоорганизующейся критичности. Мы обсудим базовые свойства песочной модели, а также те вопросы о ней, которые докладчику кажутся наиболее интересными и перспективными.

30.01 Метод Mapper как возможный подход к получению мультипараметрической устойчивости

Докладчик - Баларам Усов, студент математического факультета

Аннотация.  Метод Mapper был предложен Гуннаром Карлссоном и другими исследователями [Gurjeet Singh, Facundo Mémoli, Gunnar Carlsson, 2007] как способ низкоразмерного представления данных. Идея Mapper-а довольно прямолинейна и отсылает к простым классическим топологическим конструкциям, но, несмотря на это, метод оказался довольно успешным и нашел применение в массе разных интересных приложений. Тем не менее, сами создатели указывают, что Mapper является довольно сподручным (ad-hoc) средством репрезентации данных и не годится как самостоятельный инструмент для понижения размерности. Докладчик планирует рассказать содержание алгоритма, некоторые детали его реализации, продемонстрировав его работу на нескольких датасетах. После этого планируется обсудить как из репрезентаций данных, получаемых Mapper-ом довольно естественно, возникают мультифильтрации на комплексе Вьеториса-Рипса. Оставшееся время будет посвящено рассказу про устойчивые гомологии таких мультифильтраций [Heather Harrington, Nina Otter, Hal Schenk, Ulrike Tillmann, 2019], а также про то, как они могут возникнуть в недавно изобретенной архитектуре топологических автоэнкодеров [Michael Moor, Max Horn, Bastian Rieck, Karsten Borgwardt, 2019]. Хотя пока это лишь идея, есть надежда, что Mapper может найти новое неожиданное применение.


 

Нашли опечатку?
Выделите её, нажмите Ctrl+Enter и отправьте нам уведомление. Спасибо за участие!
Сервис предназначен только для отправки сообщений об орфографических и пунктуационных ошибках.