# Publications

Bayesian methods have been successfully applied to sparsify weights of neural networks and to remove structure units from the networks, e. g. neurons. We apply and further develop this approach for gated recurrent architectures. Specifically, in addition to sparsification of individual weights and neurons, we propose to sparsify preactivations of gates and information flow in LSTM. It makes some gates and information flow components constant, speeds up forward pass and improves compression. Moreover, the resulting structure of gate sparsity is interpretable and depends on the task.

We consider the structured-output prediction problem through probabilistic approaches and generalize the ``''perturb-and-MAP'' framework to more challenging weighted Hamming losses, which are crucial in applications. While in principle our approach is a straightforward marginalization, it requires solving many related MAP inference problems. We show that for log-supermodular pairwise models these operations can be performed efficiently using the machinery of dynamic graph cuts. We also propose to use \emph{double} stochastic gradient descent, both on the data and on the perturbations, for efficient learning. Our framework can naturally take weak supervision (e.g., partial labels) into account. We conduct a set of experiments on large-scale character recognition and image segmentation, showing the benefits of our algorithms.

The objective of this work is to develop a predictive model for multiphase wellbore flows using the machine learning approach. The artificial neural network is developed and then trained on the dataset generated using the numerical simulator of the full-scale transient wellbore flows. After the training is completed, the neural network is used to predict one of the key parameters of the wellbore flow, namely, the bottomhole pressure. The novelty of this work is related to the application of the neural network to analyze highly transient processes taking place in wellbores. In such processes, most of the parameters of interest can be represented by interdependent time series of variables linked through complex physical phenomena pertinent to the nature of multiphase flows. The proposed neural network with two hidden layers demonstrated the capability to predict the bottomhole pressure within 5% of the normalized root mean squared error for many complex wellbore configurations and flows. It is also shown that relatively higher prediction errors are mainly observed in the case of slug flows where the transient nature of flows is pronounced the most. Finally, the developed model is tested on data affected by noise. It is demonstrated that although the error of prediction slightly increases in contrast to the data without noise, the model captures essential features of the studied transient process. Description of the developed models, analysis of various test use cases, and possible future research directions are outlined.

We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish its convergence rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

We propose SEARNN, a novel training algorithm for recurrent neural networks (RNNs) inspired by the "learning to search" (L2S) approach to structured prediction. RNNs have been widely successful in structured prediction applications such as machine translation or parsing, and are commonly trained using maximum likelihood estimation (MLE). Unfortunately, this training loss is not always an appropriate surrogate for the test error: by only maximizing the ground truth probability, it fails to exploit the wealth of information offered by structured losses. Further, it introduces discrepancies between training and predicting (such as exposure bias) that may hurt test performance. Instead, SEARNN leverages test-alike search space exploration to introduce global-local losses that are closer to the test error. We first demonstrate improved performance over MLE on two different tasks: OCR and spelling correction. Then, we propose a subsampling strategy to enable SEARNN to scale to large vocabulary sizes. This allows us to validate the benefits of our approach on a machine translation task.

We consider here image denoising procedures, based on computationally effective tree-serial parametric dynamic programming procedures, different representations of an image lattice by the set of acyclic graphs and non-convex regularization of a new type which allows to flexibly set a priori preferences. Experimental results in image denoising, as well as comparison with related methods, are provided. A new extended version of multi quadratic dynamic programming procedures for image denoising, proposed here, shows an improved accuracy for images of a different type.

Recurrent neural networks show state-of-the-art results in many text analysis tasks but often require a lot of memory to store their weights. Recently proposed Sparse Variational Dropout (Molchanov et al., 2017) eliminates the majority of the weights in a feed-forward neural network without significant loss of quality. We apply this technique to sparsify recurrent neural networks. To account for recurrent specifics we also rely on Binary Variational Dropout for RNN (Gal & Ghahramani, 2016b). We report 99.5% sparsity level on sentiment analysis task without a quality drop and up to 87% sparsity level on language modeling task with slight loss of accuracy.

Конференция Computer Science уровня A* по рейтингу CORE

Clustering data with both continuous and discrete attributes is a challenging task. Existing methods lack a principled probabilistic formulation. In this paper, we propose a clustering method based on a tree-structured graphical model to describe the generation process of mixed-type data. Our tree-structured model factorized into a product of pairwise interactions, and thus localizes the interaction between feature variables of different types. To provide a robust clustering method based on the tree-model, we adopt a topographical view and compute peaks of the density function and their attractive basins for clustering. Furthermore, we leverage the theory from topology data analysis to adaptively merge trivial peaks into large ones in order to achieve meaningful clusterings. Our method outperforms state-of-the-art methods on mixed-type data.

We develop an automated variational inference method for Bayesian structured prediction problems with Gaussian process (GP) priors and linear-chain likelihoods. Our approach does not need to know the details of the structured likelihood model and can scale up to a large number of observations. Furthermore, we show that the required expected likelihood term and its gradients in the variational objective (ELBO) can be estimated efficiently by using expectations over very low-dimensional Gaussian distributions. Optimization of the ELBO is fully parallelizable over sequences and amenable to stochastic optimization, which we use along with control variate techniques to make our framework useful in practice. Results on a set of natural language processing tasks show that our method can be as good as (and sometimes better than, in particular with respect to expected log-likelihood) hard-coded approaches including svm-struct and crfs, and overcomes the scalability limitations of previous inference algorithms based on sampling. Overall, this is a fundamental step to developing automated inference methods for Bayesian structured prediction.

Конференция Computer Science уровня A* по рейтингу CORE

Equipping machine learning models with ethical and legal constraints is a serious issue; without this, the future of machine learning is at risk. This paper takes a step forward in this direction and focuses on ensuring machine learning models deliver fair decisions. In legal scholarships, the notion of fairness itself is evolving and multi-faceted. We set an overarching goal to develop a unified machine learning framework that is able to handle any definitions of fairness, their combinations, and also new definitions that might be stipulated in the future. To achieve our goal, we recycle two well-established machine learning techniques, privileged learning and distribution matching, and harmonize them for satisfying multi-faceted fairness definitions. We consider protected characteristics such as race and gender as privileged information that is available at training but not at test time; this accelerates model training and delivers fairness through unawareness. Further, we cast demographic parity, equalized odds, and equality of opportunity as a classical two-sample problem of conditional distributions, which can be solved in a general form by using distance measures in Hilbert Space. We show several existing models are special cases of ours. Finally, we advocate returning the Pareto frontier of multi-objective minimization of error and unfairness in predictions. This will facilitate decision makers to select an operating point and to be accountable for it.

This paper proposes a deep learning architecture based on Residual Network that dynamically adjusts the number of executed layers for the regions of the image. This architecture is end-to-end trainable, deterministic and problem-agnostic. It is therefore applicable without any modifications to a wide range of computer vision problems such as image classification, object detection and image segmentation. We present experimental results showing that this model improves the computational efficiency of Residual Networks on the challenging ImageNet classification and COCO object detection datasets. Additionally, we evaluate the computation time maps on the visual saliency dataset cat2000 and find that they correlate surprisingly well with human eye fixation positions.

Dropout-based regularization methods can be regarded as injecting random noise with pre-defined magnitude to different parts of the neural network during training. It was recently shown that Bayesian dropout procedure not only improves generalization but also leads to extremely sparse neural architectures by automatically setting the individual noise magnitude per weight. However, this sparsity can hardly be used for acceleration since it is unstructured. In the paper, we propose a new Bayesian model that takes into account the computational structure of neural networks and provides structured sparsity, e.g. removes neurons and/or convolutional channels in CNNs. To do this we inject noise to the neurons outputs while keeping the weights unregularized. We establish the probabilistic model with a proper truncated log-uniform prior over the noise and truncated log-normal variational approximation that ensures that the KL-term in the evidence lower bound is computed in closed-form. The model leads to structured sparsity by removing elements with a low SNR from the computation graph and provides significant acceleration on a number of deep neural architectures. The model is very easy to implement as it only corresponds to the addition of one dropout-like layer in computation graph.

We explore a recently proposed Variational Dropout technique that provided an elegant Bayesian interpretation to Gaussian Dropout. We extend Variational Dropout to the case when dropout rates are unbounded, propose a way to reduce the variance of the gradient estimator and report first experimental results with individual dropout rates per weight. Interestingly, it leads to extremely sparse solutions both in fully-connected and convolutional layers. This effect is similar to automatic relevance determination effect in empirical Bayes but has a number of advantages. We reduce the number of parameters up to 280 times on LeNet architectures and up to 68 times on VGG-like networks with a negligible decrease of accuracy.