Тема «машинное обучение»

Ученые ВШЭ оптимизировали обучение генеративных потоковых нейросетей

Ученые ВШЭ оптимизировали обучение генеративных потоковых нейросетей
Исследователи факультета компьютерных наук НИУ ВШЭ улучшили метод обучения генеративных потоковых нейросетей для работы с неструктурированными задачами. Это поможет искать новые лекарства эффективнее. Результаты работы были представлены на одной из ведущих конференций по машинному обучению — ICLR 2025. Текст работы доступен в репозитории Arxiv.org.

Научные результаты Института ИИ и цифровых наук ФКН представлены на NeurIPS 2024

Научные результаты Института ИИ и цифровых наук ФКН представлены на NeurIPS 2024

Анализ генетической информации поможет избежать осложнений после инфаркта

Анализ генетической информации поможет избежать осложнений после инфаркта
Исследователи из НИУ ВШЭ разработали модель машинного обучения, которая предсказывает риск развития осложнений у пациентов, перенесших инфаркт миокарда. В модели впервые учли генетические данные, что позволило точнее оценить риск долгосрочных осложнений. Исследование опубликовано в журнале Frontiers in Medicine.

Fall into ML 2024: взгляд в будущее машинного обучения

Fall into ML 2024: взгляд в будущее машинного обучения
25–26 октября в Москве состоялась конференция Fall into ML, организованная Институтом искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ совместно с Центром ИИ при поддержке титульного партнера Сбера. На протяжении двух дней ведущие специалисты в области искусственного интеллекта обсуждали перспективы развития фундаментальных технологий ИИ.
1 2