• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Centre of Deep Learning and Bayesian Methods

Publications
Article
A randomized coordinate descent method with volume sampling

Rodomanov A., Kropotov D.

SIAM Journal on Optimization. 2020. Vol. 30. No. 3. P. 1878-1904.

Book chapter
Deterministic Decoding for Discrete Data in Variational Autoencoders

Polykovskiy D., Vetrov D.

In bk.: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108. Iss. 108. PMLR, 2020. P. 3046-3056.

Working paper
MARS: Masked Automatic Ranks Selection in Tensor Decompositions

Kodryan M., Kropotov D., Vetrov D.

First Workshop on Quantum Tensor Networks in Machine Learning, NeurIPS 2020. QTNML 2020. First Workshop on Quantum Tensor Networks in Machine Learning, 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020

About the Centre

The centre conducts research at the intersection of two actively developing areas of data analysis: deep learning and Bayesian methods of machine learning methods. Deep learning is a section that involves building very complex models (neural networks) to solve problems such as classifying images or music, transferring an art style from picture to photograph, predicting the next words in a text. Within the framework of the Bayesian approach, probabilistic models based on the apparatus of probability theory and mathematical statistics are considered for solving such problems.

The center was created on the basis of the Bayesian Methods Research Group.