School

Mini-courses

Optimal Transport and Generative Modeling based on Stochastic Processes

Posterior sampling and Bayesian bootstrap: sample complexity and regret bounds

Alexey Naumov

HSE University

Tensors and machine learning

Introduction to diffusion models

Dmitry Vetrov

HSE University

Programme 1-2 November

1 November  
09:30 - 10:00 Registration and welcome
10:00 - 11:15 Alexey Naumov (HSE University). Posterior sampling and Bayesian bootstrap: sample complexity and regret bounds. Part 1
11:15 - 11:45 Coffee break 
11:45 - 13:00 Alexey Naumov & Daniil Tiapkin (HSE University). Posterior sampling and Bayesian bootstrap: sample complexity and regret bounds. Part 2
13:00 - 14:00 Free time
14:00 - 15:15 Ivan Oseledets (Skoltech). Tensors and machine learning. Part 1
15:15 - 15:35 Coffee break 
15:35 - 16:50 Ivan Oseledets (Skoltech). Tensors and machine learning. Part 2
17:00 - 17:30 Sergey Samsonov (HSE University). Local-Global MCMC kernels: the best of both worlds
17:30 - 18:00 Andrey Savchenko (HSE University). Computer vision on mobile devices 
2 November  
10:00 - 11:15 Evgeny Burnaev (Skoltech). Optimal Transport and Generative Modeling based on Stochastic Processes. Part 1
11:15 - 11:45 Coffee break 
11:45 - 13:00 Evgeny Burnaev (Skoltech). Optimal Transport and Generative Modeling based on Stochastic Processes. Part 2
13:00 - 14:00 Free time
14:00 - 15:15 Dmitry Vetrov (HSE University). Introduction to diffusion models. Part 1
15:15 - 15:35 Coffee break 
15:35 - 16:50 Dmitry Vetrov & Dmitry Molchanov (HSE University). Introduction to diffusion models. Part 2
17:00 - 17:30 Ivan Kharuk (INR RAS). Machine learning and astrophysics
17:30 - 18:00 Denis Derkach (HSE University). Machine Learning Challenges in Particle Physics