# Publications

We show that an effective action of the one-dimensional torus G_m on a normal affine algebraic variety *X* can be extended to an effective action of a semi-direct product G_m⋌G_a with the same general orbit closures if and only if there is a divisor *D* on *X* that consists of G_m-fixed points. This result is applied to the study of orbits of the automorphism group Aut(X) on *X*.

Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper is a classification of vertical additive group actions on X under the assumption that X is proper over an affine variety. Then we establish a criterion as to when the infinitesimal generators of a finite collection of additive group actions on X generate a finite-dimensional Lie algebra inside the Lie algebra of derivations of X.

By an additive action on an algebraic variety X we mean a regular effective action G_n^a×X→X with an open orbit of the commutative unipotent group G_n^a. In this paper, we give a classification of additive actions on complete toric surfaces.

We classify commutative algebraic monoid structures on normal affine surfaces over an algebraically closed field of characteristic zero. The answer is given in two languages: comultiplications and Cox coordinates. The result follows from a more general classification of commutative monoid structures of rank 0, n-1 or n on a normal affine variety of dimension n.

In 2007, Dubouloz introduced Danielewski varieties. Such varieties generalize Danielewski surfaces and provide counterexamples to generalized Zariski cancellation problem in arbitrary dimension. In the present work we describe the automorphism group of a Danielewski variety. This result is a generalization of a description of automorphisms of Danielewski surfaces due to Makar-Limanov.

Rota–Baxter operators present a natural generalization of integration by parts formula for the integral operator. In 2015, Zheng, Guo, and Rosenkranz conjectured that every injective Rota–Baxter operator of weight zero on the polynomial algebra R[x]R[x] is a composition of the multiplication by a nonzero polynomial and a formal integration at some point. We confirm this conjecture over any field of characteristic zero. Moreover, we establish a structure of an ind-variety on the moduli space of these operators and describe an additive structure of generic modality two on it. Finally, we provide an infinitely transitive action on codimension one subsets.

Let Y be a smooth del Pezzo surface of degree 3 polarized by a very ample divisor that is not proportional to the anticanonical one. Then the affine cone over Y is flexible in codimension one. Equivalently, such a cone has an open subset with an infinitely transitive action of the special automorphism group on it.

Let KK be an algebraically closed field of characteristic zero and GaGa be the additive group of KK. We say that an irreducible algebraic variety *X* of dimension *n* over the field KK admits an additive action if there is a regular action of the group Gna=Ga×⋯×GaGan=Ga×⋯×Ga (*n* times) on *X* with an open orbit. In this paper we find all projective toric hypersurfaces admitting additive action.

We study commutative associative polynomial operations A^n×A^n→A^n with unit on the affine space A^n over an algebraically closed field of characteristic zero. A classification of such operations is obtained up to dimension 3. Several series of operations are constructed in arbitrary dimension. Also we explore a connection between commutative algebraic monoids on affine spaces and additive actions on toric varieties

Let sp2n(K) be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element *X* in sp2n(K) there exists a nilpotent element *Y* in sp2n(K) such that *X* and *Y* generate sp2n(K).

An affine algebraic variety *X* of dimension ≥2 is called *flexible* if the subgroup SAut(X)⊂Aut(X) generated by the one-parameter unipotent subgroups acts *m*-transitively on reg(X) for any m≥1. In the previous paper we proved that any nondegenerate toric affine variety *X* is flexible. In the present paper we show that one can find a subgroup of SAut(X) generated by a finite number of one-parameter unipotent subgroups which has the same transitivity property, provided the toric variety *X* is smooth in codimension two. For X=A^n with n≥2, three such subgroups suffice.

We investigate flexibility of affine varieties with an action of a linear algebraic group. Flexibility of a smooth affine variety with only con- stant invertible functions and a locally transitive action of a reductive group is proved. Also we show that a normal affine complexity-zero horospherical variety with only constant invertible functions is flexible.

We provide an explicit description of homogeneous locally nilpotent derivations of the algebra of regular functions on affine trinomial hypersurfaces. As an application, we describe the set of roots of trinomial algebras.

Let *X* be an affine toric variety over an algebraically closed field of characteristic zero. Orbits of connected component of identity of automorphism group in terms of dimensions of tangent spaces of the variety *X* are described. A formula to calculate these dimensions is presented.

A non-degenerate toric variety X is called S-homogeneous if the subgroup of the automorphism group Aut(X) generated by root subgroups acts on X transitively. We prove that maximal S-homogeneous toric varieties are in bijection with pairs (P,A), where P is an abelian group and A is a finite collection of elements in P such that A generates the group P and for every a∈A the element a is contained in the semigroup generated by A∖{a}. We show that any non-degenerate homogeneous toric variety is a big open toric subset of a maximal S-homogeneous toric variety. In particular, every homogeneous toric variety is quasiprojective. We conjecture that any non-degenerate homogeneous toric variety is S-homogeneous.

It is known that if the special automorphism group SAut(X) of a quasiaffine variety X of dimension at least 2 acts transitively on X, then this action is infinitely transitive. In this paper we question whether this is the only possibility for the automorphism group Aut(X) to act infinitely transitively on X. We show that this is the case, provided X admits a nontrivial G_a- or G_m-action. Moreover, 2-transitivity of the automorphism group implies infinite transitivity.

We prove that every rational trinomial affine hypersurface admits a horizontal polynomial curve. This result provides an explicit non-trivial polynomial solution to a trinomial equation. Also we show that a trinomial affine hypersurface admits a Schwarz-Halphen curve if and only if the trinomial comes from a platonic triple. It is a generalization of Schwarz-Halphen's Theorem for Pham-Brieskorn surfaces.

Looking at the well understood case of log terminal surface singularities, one observes that each of them is the quotient of a factorial one by a finite solvable group. The derived series of this group reflects an iteration of Cox rings of surface singularities. We extend this picture to log terminal singularities in any dimension coming with a torus action of complexity one. In this setting, the previously finite groups become solvable torus extensions. As explicit examples, we investigate compound du Val threefold singularities. We give a complete classification and exhibit all the possible chains of iterated Cox rings.

We provide a new criterion for flexibility of affine cones over varieties covered by flexible affine varieties. We apply this criterion to prove flexibility of affine cones over secant varieties of Segre–Veronese embeddings and over certain Fano threefolds. We further prove flexibility of total coordinate spaces of Cox rings of del Pezzo surfaces.

An irreducible algebraic variety *X* is rigid if it admits no nontrivial action of the additive group of the ground field. We prove that the automorphism group of a rigid affine variety contains a unique maximal torus . If the grading on the algebra of regular functions defined by the action of is pointed, the group is a finite extension of . As an application, we describe the automorphism group of a rigid trinomial affine hypersurface and find all isomorphisms between such hypersurfaces.

By an additive action on an algebraic variety of dimension we mean a regular action with an open orbit of the commutative unipotent group . We prove that if a complete toric variety admits an additive action, then it admits an additive action normalized by the acting torus. Normalized additive actions on a toric variety are in bijection with complete collections of Demazure roots of the fan . Moreover, any two normalized additive actions on are isomorphic.

This is a survey on the automorphism groups in various classes of affine algebraic surfaces and the algebraic group actions on such surfaces. Being infinite-dimensional, these automorphism groups share some important features of algebraic groups. At the same time, they can be studied from the viewpoint of the combinatorial group theory, so we put a special accent on group-theoretical aspects (ind-groups, amalgams, etc.). We provide different approaches to classification, prove certain new results, and attract attention to several open problems.

An affine algebraic variety X is rigid if the algebra of regular functions K[X] admits no nonzero locally nilpotent derivation. We prove that a factorial trinomial hypersurface is rigid if and only if every exponent in the trinomial is at least 2.

Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty.

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result which, for example, settles the case of a finitely generated algebra of invariants. As an application, we provide a combinatorial GIT-type construction of categorial quotients for actions on, e.g. complete varieties with finitely generated Cox ring via lifting to the characteristic space.

Let X be an algebraic variety covered by open charts isomorphic to the affine space and q: X' \to X be the universal torsor over X. We prove that the automorphism group of the quasiaffine variety X' acts on X' infinitely transitively. Also we find wide classes of varieties X admitting such a covering.

By an additive action on a hypersurface H in a projective space we mean an effective action of a commutative unipotent group on the projective space which leaves H invariant and acts on H with an open orbit. Brendan Hassett and Yuri Tschinkel have shown that actions of commutative unipotent groups on projective spaces can be described in terms of local algebras with some additional data. We prove that additive actions on projective hypersurfaces correspond to invariant multilinear symmetric forms on local algebras. It allows us to obtain explicit classification results for non-degenerate quadrics and quadrics of corank one.

At the end of the 19th century Bricard discovered the phenomenon of flexible polyhedra, that is, polyhedra with rigid faces and hinges at edges that admit non-trivial flexes. One of the most important results in this field is a theorem of Sabitov, asserting that the volume of a flexible polyhedron is constant during the flexion. In this paper we study flexible polyhedral surfaces in ℝ3, doubly periodic with respect to translations by two non-collinear vectors, that can vary continuously during the flexion. The main result is that the period lattice of a flexible doubly periodic surface that is homeomorphic to the plane cannot have two degrees of freedom

Consider the automorphism group of a finite-dimensional algebra. S. Halperin conjectured that the identity component of this group is solvable if the algebra is a complete intersection. The solvability criterion recently obtained by M. Schulze provides a proof to a local case of this conjecture as well as giving an alternative proof of S.S.-T. Yau's theorem based on a deep result due to G. Kempf. In this note we complete the proof of Halperin's conjecture and study the extremal cases in Schulze's criterion, where the Lie algebra of derivations is non-solvable. This allows us to deduce a direct, self-contained proof of Yau's theorem.

Let X be an affine toric variety. The total coordinates on X provide a canonical presentation !X -> X of X as a quotient of a vector space !X by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of afinitely generated algebra of invariants. As an application, we provide a combinatorial GIT-type construction of categorical quotients for actions of not necessarily reductive groups on, e.g. complete varieties with finitely generated Cox ring via lifting to the characteristic space

In this note we survey recent results on automorphisms of affine algebraic varieties, infinitely transitive group actions and flexibility. We present related constructions and examples, and discuss geometric applications and open problems.

Given an irreducible affine algebraic variety X of dimension n≥2, we let SAut(X) denote the special automorphism group of X, that is, the subgroup of the full automorphism group Aut(X) generated by all one-parameter unipotent subgroups. We show that if SAut(X) is transitive on the smooth locus Xreg, then it is infinitely transitive on Xreg. In turn, the transitivity is equivalent to the flexibility of X. The latter means that for every smooth point x∈Xreg the tangent space TxX is spanned by the velocity vectors at x of one-parameter unipotent subgroups of Aut(X). We also provide various modifications and applications.

In this paper we classify SL_2-actions on normal affine T-varieties that are normalized by the torus T. This is done in terms of a combinatorial description of T-varieties given by Altmann and Hausen. The main ingredient is a generalization of Demazure's roots of the fan of a toric variety. As an application we give a description of special SL_2-actions on normal affine varieties. We also obtain, in our terms, the classification of quasihomogeneous SL_2-threefolds due to Popov.

We study the Cox realization of an affine variety, that is, a canonical representation of a normal affine variety with finitely generated divisor class group as a quotient of a factorially graded affine variety by an action of the Neron-Severi quasitorus. The realization is described explicitly for the quotient space of a linear action of a finite group. A universal property of this realization is proved, and some results in the divisor theory of an abstract semigroup emerging in this context are given. We show that each automorphism of an affine variety can be lifted to an automorphism of the Cox ring normalizing the grading. It follows that the automorphism group of an affine toric variety of dimension ≥ 2 without nonconstant invertible regular functions has infinite dimension. We obtain a wild automorphism of the three-dimensional quadratic cone that rises to the Anick automorphism of the polynomial algebra in four variables.

We prove that any affine algebraic monoid can be obtained as the endomorphisms' monoid of a finite-dimensional (nonassociative) algebra.

In the theory of affine SL(2)-embeddings, which was constructed in 1973 by Popov, a locally transitive action of the group SL(2) on a normal affine three-dimensional variety X is determined by a pair (p/q, r), where 0 < p/q ≤ 1 is a rational number written as an irreducible fraction and called the height of the action, while r is a positive integer that is the order of the stabilizer of a generic point. In the present paper it is shown that the variety X is toric, that is, it admits a locally transitive action of an algebraic torus if and only if the number r is divisible by q - p. For that, the following criterion for an affine G/H-embedding to be toric is proved. Let X be a normal affine variety, G a simply connected semisimple group acting regularly on X, and H ⊂ G a closed subgroup such that the character group X(H) of the group H is finite. If an open equivariant embedding G/H → X is defined, then X is toric if and only if there exist a quasitorus T̂ and a (G × T̂)-module V such that X ≅G V//T̂. In the substantiation of this result a key role is played by Cox's construction in toric geometry.

Given a multigraded algebra A, it is a natural question whether or not for two homogeneous components A_u and A_v, the product A_nuA_nv is the whole component A_nu+nv for n big enough. We give combinatorial and geometric answers to this question.

The behavior of closed polynomials, i.e., polynomials f ∈ k[x_1, . . . , x_n] \ k such that the subalgebra k[f] is integrally closed in k[x_1, . . . , x_n], is studied under extensions of the ground field. Using some properties of closed polynomials, we prove that, after shifting by constants, every polynomial f ∈ k[x_1, . . . , x_n] \ k can be factorized into a product of irreducible polynomials of the same degree. We consider some types of saturated subalgebras A ⊂ k[x_1, . . . , x_n], i.e., subalgebras such that, for any f ∈ A \ k, a generative polynomial of f is contained in A.