• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Проектно-учебная лаборатория «Искусственный интеллект в математических финансах»

Публикации
Статья
An Evolutionary Model of Financial Market Efficiency with Costly Information
В печати

Aleksei Pastushkov.

HSE Economic Journal. 2024. Vol. 28. No. 2. P. 276-301.

Проектно-учебная лаборатория «Искусственный интеллект в математических финансах» предполагает проведение регулярных исследований применения искусственного интеллекта для решения научных и прикладных задач в сфере математических финансов. Ключевые исследования лаборатории связаны с направлениями Мультиагентных систем, RL для задачи маркет мейкера и хеджирования активов, а также Генеративных моделей. Работа лаборатории направлена на объединение сообществ экспертов по машинному обучению и специалистов в области моделирования финансовых рисков и динамики биржевых торгов, работающих в банках, брокерских подразделениях и иных компаниях.

Новости

В своей классической работе Гроссман и Стиглиц [1980]* показывают, что цены на финансовые активы неизбежно содержат определенную степень неэффективности при ненулевых информационных издержках. Однако, этот результат был получен в парадигме рациональных ожиданий, предъявляющих нереалистичные требования к рациональности агентов, и постулирует лишь невозможность эффективного равновесия, не затрагивая динамику эффективности рынка. Симуляционные мультиагентные модели с элементом рыночного отбора позволяют изучить динамику эффективности рынка в условиях, когда агенты ограниченно рациональны и адаптивны. Мы моделируем поведение инвесторов с помощью т.н. алгоритма  многорукого бандита и обнаруживаем U-образное отношение эффективности рынка к информационным издержкам.
* Grossman, Sanford J., and Joseph E. Stiglitz. "On the impossibility of informationally efficient markets." The American economic review 70, no. 3 (1980): 393-408.

Докладчик: Алексей Пастушков, стажер-исследователь ПУЛ "ИИ в математических финансах".
1 августа
На семинаре была представлена исследовательская работа, целью которой являлся анализ точек разрыва в стохастических моделях процентной ставки под воздействием цветных шумов. Исследовалось влияние цветных шумов на количество точек разрыва и их частоту, а также возможности их обнаружения с использованием нейросетевого подхода. Объектом исследования являлась стохастическая модель Васичека, которая используется для моделирования процентных ставок. Методология исследования включала в себя аппроксимацию численных решений модели методом Эйлера-Маруямы, калибровка параметров модели, а также адаптацию шага интеграции. Отдельно были рассмотрены методы обнаружения точек разрыва и их применение для сгенерированных данных. В качестве итога исследования представлены результаты работы моделей глубинного обучения для детекции точек разрыва в данных, сгенерированных под воздействием шумов.
15 апреля
Еще новости