Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Адрес: 109028, г. Москва, Покровский бульвар, д. 11, корпус S, комната S938 (станции метро "Чистые пруды" и "Курская").
Телефон: +7(495) 772-95-90 *27319
Департамент анализа данных и искусственного интеллекта был создан в 2014 году на базе кафедры анализа данных и искусственного интеллекта. В его состав входят исследователи с мировым именем, активно участвующие в международных исследовательских проектах.
Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.
Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.
Vasilii A. Gromov, Yury N. Beschastnov, Korney K. Tomashchuk.
PeerJ Computer Science. 2023. Vol. 9. No. .
Kanovich M., Kuznetsov S., Scedrov A.
Information and Computation. 2022. Vol. 287.
Egurnov D., Ignatov D. I.
Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.
Egurnov D., Точилкин Д. С., Ignatov D. I.
In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.
Dudyrev F., Neznanov A., Anisimova K.
In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.
Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.
In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.
Dudyrev E., Semenkov Ilia, Kuznetsov S. et al.
Plos One. 2022. Vol. 17. No. 10.
Аннотация доклада:
Анализ формальных понятий (АФП) дает удобный математический аппарат для описания различных методов поиска зависимостей, кластеризации, классификации, построения таксономий, но требует сведения исходных данных к бинарному виду.
Узорные структуры позволяют расширить методы, основанные на АФП, на частично-упорядоченные описания произвольной природы, такие как графы (упорядоченные отношением изоморфизма подграфу), последовательности, логические формулы, деревья разбора итд.
В докладе были показаны различные модели обнаружения знаний, такие как порождение импликативных зависимостей, ассоциативных правил, бикластеров, таксономий, правил классификации может быть осуществлено для сложноструктурированных данных с использованием узорных структур.
Различные приложения таких методов были показаны в областях химической информатики, обработки естественного языка, медицинской информатики, и биоинформатики.
Руководитель департамента анализа данных и искусственного интеллекта