• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Efficient indexing of peptides for database search using Tide

Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.

Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.

Статья
Language models for some extensions of the Lambek calculus

Kanovich M., Kuznetsov S., Scedrov A.

Information and Computation. 2022. Vol. 287.

Статья
Triclusters of Close Values for the Analysis of 3D Data

Egurnov D., Ignatov D. I.

Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.

Глава в книге
Triclustering in Big Data Setting

Egurnov D., Точилкин Д. С., Ignatov D. I.

In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.

Глава в книге
Ontology-Controlled Automated Cumulative Scaffolding for Personalized Adaptive Learning

Dudyrev F., Neznanov A., Anisimova K.

In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.

Глава в книге
Modeling Generalization in Domain Taxonomies Using a Maximum Likelihood Criterion

Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.

In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.

Stochastic Modelling

Outline of the course

1. Clustering

Lecture Notes 1    Problem sheet 1    Solutions 1

2. PCA / Probabilistic PCA

Lecture Notes 2    Problem sheet 2    Solutions 2

3. Kalman Filtering

Lecture Notes 3    Problem sheet 3    Solutions 3

4. Sampling Methods and Particle Filtering

Lecture Notes 4    Problem sheet 4    Solutions 4

5. Poisson Process

Lecture Notes 5    Problem sheet 5    Solutions 5

Assessment for Module 1

Assignment 1 - till Friday 21st October 2016 at 3.10pm.
Assignment 1 Solution
It is worth 10% of your final mark.

One mid-term exam, worth 25% of your final mark    Instructions for the test

Main Reference

[1] Christopher Bishop. Pattern Recognition and Machine Learning, Springer, 2006.

Optional Reading (not examinable)

[1] D. Arthur. and S. Vassilvitskii (2007). k-means++: the advantages of careful seeding. In ACM-SIAM Symposium on Discrete Algorithms. pdf.
[2] C. Burges (2009). Dimension Reduction: A Guided Tour. In Foundations and Trends in Machine Learning. Vol 2(4), pp 275-365. pdf.