• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11

Телефон: +7(495) 772-95-90 *28240

Руководство
Научный руководитель направления “Программная инженерия" Аветисян Арутюн Ишханович
Руководитель департамента Лебедев Сергей Аркадьевич
Заместитель руководителя департамента Максименкова Ольга Вениаминовна
Книга
Computer Networks

Rodriges Zalipynis R. A.

St. Petersburg: Naukoemkie Technologii, 2024.

Глава в книге
Game Development Education: Approaches for Teaching Software Engineering Students

Maksimenkova O. V., Lebedev S., Pozdnyakov D.

In bk.: Futureproofing Engineering Education for Global Responsibility: Proceedings of the 27th International Conference on Interactive Collaborative Learning (ICL2024), Volume 4. Springer, 2025. P. 116-125.

Препринт
Approach to Designing CV Systems for Medical Applications: Data, Architecture and AI
В печати

Ryabtsev D., Vasilyev Boris, Shershakov S.

Computer Science ::Computer Vision and Pattern Recognition. 2501.14689. arXiv, 2025

Коллоквиум факультета компьютерных наук. "Process Mining: Data Science in Action"

Мероприятие завершено
27-го ноября в рамках Коллоквиума факультета компьютерных наук выступит академический руководитель Международной научно-учебной лаборатории процессно-ориентированных информационных систем (МЛПОИС) профессор Вил ван дер Аалст. Тема доклада: "Process Mining: Data Science in Action".
Wil van der Aalst 
Eindhoven University of Technology
Process Mining: Data Science in Action

Время: 16:40 - 18:00
Место: Кочновский проезд, дом 3, лекционный зал Декарт (3 этаж)
Аннотация
Data science is the profession of the future, because organizations that are unable to use (big) data in a smart way will not survive. It is not sufficient to focus on data storage and data analysis. The data scientist also needs to relate data to process analysis. Process mining bridges the gap between traditional model-based process analysis (e.g., simulation and other business process management techniques) and data-centric analysis techniques such as machine learning and data mining. Process mining seeks the confrontation between event data (i.e., observed behavior) and process models (hand-made or discovered automatically). This technology has become available only recently, but it can be applied to any type of operational processes (organizations and systems). Example applications include: analyzing treatment processes in hospitals, improving customer service processes in a multinational, understanding the browsing behavior of customers using a booking site, analyzing failures of a baggage handling system, and improving the user interface of an X-ray machine. All of these applications have in common that dynamic behavior needs to be related to process models. Hence, prof. Wil van der Aalst refers to it in his talk as "data science in action". Process mining provides not only a bridge between data mining and business process management; it also helps to address the classical divide between "business" and "IT". Evidence-based business process management based on process mining helps to create a common ground for business process improvement and information systems development. 

 
Wil van der Aalst - Process Mining Data Science in Action (PDF, 1.03 Мб)