Cтуденческие и аспирантские проекты
В настоящем разделе представлены некоторые текущие научные проекты лаборатории. Если вы студент бакалавриата, магистратуры или аспирант и хотите решать задачи под руководством сотрудников лаборатории, то вы можете выбрать одну из понравившихся тем и связаться с соответствующим сотрудником лаборатории.
Old talks and posters of (BS, MS, PhD) students:
- L. Iosipoi:
- MCMC for heavy-tailed distributions with known characteristic function and unknown density (poster, Structural inference in high-dimensional models - 2, 2019);
- Comparing LS and EVM in Variance Reduction (poster, Structural Inference in high-dimensional models, 2018);
- Variance reduction in Monte-Carlo via Empirical Variance Minimization (talk, winter school New frontiers in high-dimensional probability and statistics, 2018);
- M. Kaledin:
- Approximate Dynamic Programming for American Options (poster, Structural inference in high-dimensional models - 2, 2019);
- A. Kroshin:
- CLT and confidence sets in 2-Wasserstein space (poster, Structural Inference in high-dimensional models, 2018);
- Law of Large Numbers and Central Limit Theorem for Wasserstein Barycenters (talk, winter school New frontiers in high-dimensional probability and statistics, 2018);
- N. Puchkin:
-
Structure-adaptive manifold estimation (poster, Structural inference in high-dimensional models - 2, 2019);
- Pointwise adaptation via stagewise aggregation of local estimates for multiclass classification (poster 2018 IMS Annual Meeting on Probability and Statistics, 2018);
- Pointwise adaptation via stagewise aggregation of local estimates for multiclass classification (talk at winter school New frontiers in high-dimensional probability and statistics, 2018);
-
- S. Samsonov:
- Variance Reduction for Dependent Sequences via Empirical Variance Minimisation (poster, Structural Inference in high-dimensional models 2, 2019);
- V. Shumovskaia:
- Towards Hypothesis Testing for Random Graphs with Community Structure (poster, Structural Inference in high-dimensional models, 2018);
- I. Silin: On the posterior distribution of covariance matrix (talk, winter school New frontiers in high-dimensional probability and statistics, 2018);
- Y. Tavyrikov: Approximate Dynamic Programming (talk, winter school New frontiers in high-dimensional probability and statistics, 2018);
Нашли опечатку?
Выделите её, нажмите Ctrl+Enter и отправьте нам уведомление. Спасибо за участие!
Сервис предназначен только для отправки сообщений об орфографических и пунктуационных ошибках.