• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Efficient indexing of peptides for database search using Tide

Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.

Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.

Статья
Language models for some extensions of the Lambek calculus

Kanovich M., Kuznetsov S., Scedrov A.

Information and Computation. 2022. Vol. 287.

Статья
Triclusters of Close Values for the Analysis of 3D Data

Egurnov D., Ignatov D. I.

Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.

Глава в книге
Triclustering in Big Data Setting

Egurnov D., Точилкин Д. С., Ignatov D. I.

In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.

Глава в книге
Ontology-Controlled Automated Cumulative Scaffolding for Personalized Adaptive Learning

Dudyrev F., Neznanov A., Anisimova K.

In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.

Глава в книге
Modeling Generalization in Domain Taxonomies Using a Maximum Likelihood Criterion

Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.

In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.

Research Seminar StaGe: Statistics, Geometry and their interaction with Graph Theory

2020/2021
Учебный год
ENG
Обучение ведется на английском языке
5
Кредиты
Статус:
Курс по выбору
Когда читается:
2-й курс, 1 семестр

Преподаватели

Course Syllabus

Abstract

The course takes place every other week (once every two weeks) and each session lasts 2 academic hours. Sessions alternate between presentations by invited researchers and topical lectures on subjects ranging from Comparison Geometry and Optimal Transport to Graph Theory with a clear inclination towards questions of statistical nature.
Learning Objectives

Learning Objectives

  • To provide doctoral students with theoretical background and exposure to current research topics presented by invited leading researchers, academic members of the computer science faculty or students themselves.
Expected Learning Outcomes

Expected Learning Outcomes

  • Solve mathematically challenging problems.
  • Work in group environment.
  • Read, write and present research in mathematics and theoretical computer science.
Course Contents

Course Contents

  • Geometry, Graph Theory, Probability and Statistics.
Assessment Elements

Assessment Elements

  • non-blocking Presentation
  • non-blocking Attendance
  • non-blocking Presentation
  • non-blocking Attendance
Interim Assessment

Interim Assessment

  • Interim assessment (1 semester)
    0.5 * Attendance + 0.5 * Presentation
Bibliography

Bibliography

Recommended Core Bibliography

  • Cesa-Bianchi, N., Lugosi, G. Prediction, learning, and games. – Cambridge university press, 2006. – 408 pp.

Recommended Additional Bibliography

  • Diestel R. Graph Theory. – Springer, 2017. – 428 pp.