• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Efficient indexing of peptides for database search using Tide

Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.

Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.

Статья
Language models for some extensions of the Lambek calculus

Kanovich M., Kuznetsov S., Scedrov A.

Information and Computation. 2022. Vol. 287.

Статья
Triclusters of Close Values for the Analysis of 3D Data

Egurnov D., Ignatov D. I.

Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.

Глава в книге
Triclustering in Big Data Setting

Egurnov D., Точилкин Д. С., Ignatov D. I.

In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.

Глава в книге
Ontology-Controlled Automated Cumulative Scaffolding for Personalized Adaptive Learning

Dudyrev F., Neznanov A., Anisimova K.

In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.

Глава в книге
Modeling Generalization in Domain Taxonomies Using a Maximum Likelihood Criterion

Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.

In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.

Analysis and Visualization of Networks

2024/2025
Учебный год
ENG
Обучение ведется на английском языке
4
Кредиты
Статус:
Курс по выбору
Когда читается:
4-й курс, 3 модуль

Преподаватель

Course Syllabus

Abstract

This course introduces methods and algorithms for analysing and visualizing graphs and networks. The course includes a review of modern network analysis and visualization techniques with their applications in various domains. We will concern on three main topics: network analysis methods based on applied graph theory, graph drawing algorithms, applications of network analysis and visualization to real problems.
Learning Objectives

Learning Objectives

  • To know the classification of main network analysis tasks, basic methods and algorithms, most popular software tools.
  • To be able to define a graph-theoretic description of network analysis task and corresponding network visualization requirements.
  • To be able to select reasonably an appropriate project solutions and tools for network analysis workflow.
  • To be able to develop a new variants of graph drawing algorithms.
Expected Learning Outcomes

Expected Learning Outcomes

  • Students design and solve graph-theoretical mathematical models.
  • Students know the basic concepts of analysing and visualizing graphs and networks.
  • Students select and justify appropriate graph drawing method and algorithm.
  • Students use development techniques, skills and tools necessary to network visualization.
Course Contents

Course Contents

  • Introduction
  • Graphs, topology and geometry
  • Visualization of small graphs: drawing and layout
  • Visualization of large graphs
  • Interactive visualization of graphs
  • Visualization of graphs and networks in real world applications
  • Modern trends in graph databases and network analysis software
Assessment Elements

Assessment Elements

  • non-blocking Quizzes (tests)
    Quiz 1-9
  • non-blocking Homeworks
Interim Assessment

Interim Assessment

  • 2024/2025 3rd module
    0.6 * Homeworks + 0.4 * Quizzes (tests)
Bibliography

Bibliography

Recommended Core Bibliography

  • Brath, R., Jonker, D. Graph Analysis and Visualization: Discovering Business Opportunity in Linked Data. – Wiley, 2015. – 513 pp.

Recommended Additional Bibliography

  • Newman, M., Watts, D. J., and Barabási, A. The Structure and Dynamics of Networks. – Princeton University Press, 2006. – 592 pp.

Authors

  • Антропова Лариса Ивановна
  • Karpov Ilia Andreevich