Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Адрес: 109028, г. Москва, Покровский бульвар, д. 11, корпус S, комната S938 (станции метро "Чистые пруды" и "Курская").
Телефон: +7(495) 772-95-90 *27319
Департамент анализа данных и искусственного интеллекта был создан в 2014 году на базе кафедры анализа данных и искусственного интеллекта. В его состав входят исследователи с мировым именем, активно участвующие в международных исследовательских проектах.
Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.
Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.
Vasilii A. Gromov, Yury N. Beschastnov, Korney K. Tomashchuk.
PeerJ Computer Science. 2023. Vol. 9. No. .
Kanovich M., Kuznetsov S., Scedrov A.
Information and Computation. 2022. Vol. 287.
Egurnov D., Ignatov D. I.
Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.
Egurnov D., Точилкин Д. С., Ignatov D. I.
In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.
Dudyrev F., Neznanov A., Anisimova K.
In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.
Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.
In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.
Dudyrev E., Semenkov Ilia, Kuznetsov S. et al.
Plos One. 2022. Vol. 17. No. 10.
Научно-учебная группа “Машинное обучение на данных нейроимаджинга” создана под руководством профессора департамента анализа данных и искусственного интеллекта Леонида Жукова и академика РАН, заведующего кафедрой технологий моделирования сложных систем Александра Кулешова. Работа группы направлена на изучение и применение студентами магистерской программы “Науки о данных” современных методов машинного обучения на структурных коннектомах – сетевых моделях мозга, построенных на основе данных диффузионной магнитно-резонансной томографии. В состав группы вошли студенты факультета компьютерных наук Юлия Додонова, Александр Иванов, Сергей Королев, Анвар Курмуков, Дмитрий Петров, Амир Сафиуллин и Анна Ткачева. Научно-учебная группа проводит еженедельный семинар “Анализ данных в нейронауках” совместно с ИППИ РАН, который могут посещать все желающие.
Научно-учебная группа ”Модели и методы анализа демографических последовательностей” под руководством доцента департамента анализа данных и искусственного интеллекта Дмитрия Игнатова объединит усилия исследователей из разных областей для анализа демографических последовательностей в России. В состав группы вошли как студенты факультета компьютерных наук Данил Гиздатуллин и Анна Муратова, так и студенты факультета социальных наук Руслан Абдулаев, Алена Артамонова, Алина Долгова и Сушко Павел, а также младший научный сотрудник Научно-учебной лаборатории социально-демографической политики Екатерина Митрофанова.