Семинар HDI&TFAIM Lab «Ranking from pairwise comparison»
26 сентября, в 14:40 с докладом выступит Владимир Григорьевич Спокойный (НИУ ВШЭ, WIAS, Humboldt University), семинар будет проходить в аудитории R409.
The recent paper Gao et al. (2023) on estimation and inference for top-ranking problem in Bradley-Terry-Luce (BTL) model presented a surprising result: component-wise estimation and inference can be done under much weaker conditions on the number of comparison then it is required for the full dimensional estimation. The present paper revisits this finding from completely different viewpoint. Namely, we show how a theoretical study of estimation in sup-norm can be reduced to the analysis of plug-in semiparametric estimation. For the latter, we adopt and extend the general approach from Spokoiny (2025b) to high-dimensional estimation and inference. The main tool of the analysis is a theory of perturbed marginal optimization when an objective function depends on a low-dimensional target parameter along with a high-dimensional nuisance parameter. A particular focus of the study is the critical dimension condition. Full-dimensional estimation requires in general the condition n ≫ 𝕡 between the effective parameter dimension 𝕡 and the effective sample size corresponding to the smallest eigenvalue of the Fisher information matrix . Inference on the estimated parameter is even more demanding: the condition n ≫ 𝕡^2 cannot be generally avoided; see Spokoiny (2025b). However, for the sup-norm estimation, the critical dimension condition can be reduced to n ≥ C log(p).
По всем вопросам обращайтесь к Горностаевой Екатерине Дмитриевне egornostaeva@hse.ru