• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Семинар по алгебраическим группам преобразований

под руководством д.ф.-м.н. И.В. Аржанцева, к.ф.-м.н. С.А. Гайфуллина и к.ф.-м.н. А.Ю. Перепечко.

Семинар проходит в корпусе НИУ ВШЭ на Покровском бульваре, 11 или в дистанционном режиме на платформе Zoom. Если вы хотите подписаться на рассылку семинара или оформить разовый пропуск, пожалуйста, свяжитесь с Дмитрием Чунаевым по электронной почте dchunaev@hse.ru

2023 год

89 27 сентября - Метод орбит для бесконечномерных алгебр Ли (Михаил Игнатьев) 

Основной инструмент в теории представлений конечномерных нильпотентных комплексных алгебр Ли -- метод орбит, алгебраическая версия которого была создана Ж. Диксмье и его школой. Этот метод гласит, что примитивные идеалы в универсальной обёртывающей алгебре такой алгебры Ли классифицируются с помощью орбит коприсоединённого представления. При этом многие важные свойства примитивных идеалов допускают трактовку в терминах орбит.
   
Естественным обобщением конечномерного случая является рассмотрение локально нильпотентных алгебр Ли -- прямых пределов конечномерных нильпотентных алгебр. Типичный пример: алгебра Гейзенберга со счётным числом образующих. Оказывается, что метод орбит допускает обобщение на бесконечномерный случай, только требуется несколько иная его формулировка. А именно, для произвольной локально нильпотентной алгебры Ли n имеется гомеоморфизм между пространством примитивных идеалов в универсальной обёртывающей алгебре U(n) и пространством примитивных пуассоновых идеалов в симметрической алгебре S(n). (В конечномерной ситуации это равносильно обычной формулировке метода орбит.)
   
В докладе я планирую подробно рассказать как о конечномерном, так и о бесконечномерном случаях. Также я хочу обсудить более сильные результаты, которые удаётся получить для специальных классов локально нильпотентных алгебр Ли -- так называемых ниль-алгебр Ли-Дынкина. Кроме этого, я сформулирую ряд гипотез и открытых проблем в бесконечномерной ситуации.
   
Доклад частично основан на наших совместных работах с Алексеем Петуховым.

 

88 13 сентября - Критерий алгебраичности G- порожденной подгруппы (Антон Шафаревич) 

Доклад будет основан на результатах, полученных в работе Hanspeter Kraft, Mikhail Zaidenberg "Algebraically generated groups and their Lie algebras" (https://arxiv.org/abs/2203.11356)
 
Пусть X - аффинное алгебраическое многообразие и L - подалгебра Ли в алгебре Ли дифференцирований на Х, порожденная локально нильпотентными дифференцированиями. В своем докладе я собираюсь рассказать доказательство теоремы о том, почему если L конечномерна, то группа, порожденная соответствующими G- действиями, является алгебраической.  

 

87 6 сентября - Триномиальные многообразия (Сергей Гайфуллин) 

Широко известный класс торических многообразий характеризуется тем, что на многообразии эффективно действует тор, размерность которого равна размерности многообразия. Наличие действующего тора большой размерности позволяет удобно работать с торическими многообразиями. Следующий класс, который разумно рассмотреть, это многообразия с действием тора сложности 1, то есть с эффективным действием тора, размерность которого на единицу меньше, чем размерность многообразия. Примером таких многообразий являются триномиальные гиперповерхности, то есть многообразия, заданное обращением в ноль многочлена, имеющего ровно три члена, причём каждая переменная входит только в один моном.  Оказывается, что есть связь между произвольными многообразиями с действием тора сложности один и триномиальными многообразиями, то есть многообразиями (не обязательно гиперповерхностями), заданным некой согласованной системой триномов. Эта связь состоит в том, что тотальное координатное пространство любого многообразия с действием тора сложности 1 является триномиальным многообразием.

В докладе будет дано обзор в том числе недавних результатов (некоторая часть этих результатов получена коллективом лаборатории) о триномиальных многообразиях. Особый упор будет сделан на недавнем результате, полученном докладчиком совместно с П. Евдокимовой и А.Шафаревичем, который состоит в критерии жёсткости для триномиальных многообразий и описании группы автоморфизмов жёстких триномиальных многообразий.

 

86 14 июня - Интегрируемые образующие алгебр Ли векторных полей на группе SL(2) и на поверхности xy=z2 (Виктор Лопаткин) 

В данном докладе мы разберём статью Р.Б. Андриста с одноимённым названием. Речь пойдёт о полиномиальных векторных полях на группе SL(2), рассматриваемой как аффинное многообразие, и на особой квадратичной поверхности Данилевского, которая задается уравнением xy = z2. Главным образом, нас будут интересовать порождающие алгебры Ли этих векторных полей. В случае SL(2), мы предъявим в явном виде четыре полных векторных поля, которые порождают алгебру Ли всех полиномиальных векторных полей на этом многообразии. Далее мы рассмотрим поверхность Данилевского. Известно, что эта поверхность есть торическое многообразие. Мы также явно опишем пять полных векторных полей, которые порождают алгебру Ли полиномиальных векторных полей на этом многообразии.

 

85 7 июня - Автоморфизмы алгебры инвариантов конечной группы (Сергей Гайфуллин) 

Доклад основан на работе Janos Kollar "Automorphisms and twisted forms of rings of invariants", 2023. Пусть конечная группа действует линейно на аффинном пространстве. Так как действие линейно, оно коммутирует с действием одномерного тора гомотетиями. Это действие одномерного тора даёт нетривиальное действие одномерного тора на алгебре инвариантов. В докладе будут обсуждаться достаточные условия того, что других автоморфизмов у алгебры инвариантов нет. В размерностях 2 и 3 будут рассказаны критерии.

 

84 24 мая - Теорема Абъянкара — Моха — Судзуки (Антон Трушин) 

Рассмотрим вложение прямой в плоскость, заданное парой многочленов f(t) и g(t). Тогда для этих многочленов должен найтись такой многочлен H(x,y), что H(f(t),g(t)) = t. Теорема Абъянкара — Моха — Судзуки связывает степени многочленов f и g: большая степень делится на меньшую степень без остатка. Теперь, применяя элементарные автоморфизмы, можно понижать сумму степеней многочленов f и g и, например, перевести исходную прямую в прямую x = 0. Доклад будет посвящён доказательству теоремы Абъянкара — Моха — Судзуки, данному Макар-Лимановым в 2017 году в статье [1].

[1] Л. Г. Макар-Лиманов. Теорема Абъянкара–Моха–Судзуки. Математическое просвещение, 2017, выпуск 21, 119–135

 

83 26 апреля - Алгебраически порожденные группы и их алгебры Ли (Антон Шафаревич) 

Хорошо известно, что группа автоморфизмов аффинного алгебраического многообразия может не является алгебраической группой. Однако на ней можно ввести структуру инд-группы. В докладе будет рассказано о результатах, полученных Х. Крафтом и М. Зайденбергом, касающихся группы автоморфизмов аффинного алгебраического многообразия. В частности, будет рассказано о связи между алгебраическими подгруппами в группе автоморфизмов и подалгебрами Ли в алгебре Ли векторных полей на многообразии.

 

82 19 апреля - Неединственность индуцированного аддитивного действия на вырожденных гиперповерхностях (Иван Бельдиев) 

Индуцированным аддитивным действием на проективной гиперповерхности называется эффективное регулярное действие группы (Ga)n с открытой орбитой, которое продолжается до регулярного действия на объемлющем пространстве. В работе [1] доказано, что на невырожденной гиперповерхности, то есть поверхности, не являющейся проективным конусом над гиперповерхностью в проективном пространстве меньшей размерности, существует не более одного индуцированного аддитивного действия с точностью до эквивалентности. Мы докажем обратное утверждение: если вырожденная гиперповерхность допускает индуцированное аддитивное действие, то на этой гиперповерхности есть хотя бы два неэквивалентных индуцированных аддитивных действия. Доклад основан на препринте [2].

[1] И.В.Аржанцев и Ю.И.Зайцева, “Эквивариантные пополнения аффинных пространств”, УМН, 77:4 (466) (2022), 3–90

[2] Ivan Beldiev. Gorenstein Algebras and Uniqueness of Additive Actions. arXiv:2303.05573

Слайды

 

81 29 марта - Основы торической топологии II (Виктория Оганисян) 

Мой доклад сущностно продолжит предыдущий. В первой части я продолжу обзор сюжетов и тем из торической топологии, потенциально интересных торическим геометрам. Одним из основных понятий торической топологии является момент-угол многообразие; я постараюсь осветить некоторые интересные конструкции, связывающие этот объект с торическими многообразиями. Во второй части я кратко расскажу о моих текущих исследованиях в сфере торической топологии: я изучаю, каким простым многогранникам соответствуют момент-угол многообразия, имеющие когомологии связной суммы произведений сфер; интересен и обратный вопрос: какие многообразия, являющиеся связными суммами произведений сфер, могут оказаться момент-угол комплексом для какого-либо простого многогранника.

 

80 1 марта - Основы торической топологии I (Русланс Алексеевс) 

Доклад будет посвящен обзору торической топологии — молодой и активно развивающейся области математики, лежащей в пересечении топологии, комбинаторики, теории многогранников, комбинаторной коммутативной алгебры, алгебраической и симплектической геометрии. В первой части доклада мы обсудим основные понятия торической топологии и их свойства. Далее я расскажу некоторые сюжеты из торической топологии, пытаясь мотивировать целесообразность изучения рассматриваемых объектов. Во второй части доклада я попробую рассказать о моих текущих исследованиях, связанных с торической топологией, а именно о попытках обобщения классической для нестабильной теории гомотопий теоремы Хилтона-Милнора.

79 15 февраля - Del Pezzo quintics as equivariant compactifications of vector groups (Pedro Montero, Universidad Técnica Federico Santa María, Chile)

78 18 января - Mirror symmetry for special nilpotent orbit closures (Baohua Fu, Chinese Academy of Sciences, Beijing)

2022 год

77 14 декабря - Characterization of algebraic varieties by their groups of symmetries (Alvaro Liendo, Universidad de Talca, Chile)

76 7 декабря -  Конечная порожденность ядер локально нильпотентных дифференцирований алгебры многочленов (Анна Каширкина)

75 18 ноября - Пример не конечно порожденного ядра локально нильпотентного дифференцирования (Вероника Треумова)

74 9 ноября - Matroid Schubert varieties as equivariant compactifications of affine spaces (Colin Crowley, University of Wisconsin–Madison, USA)

73 2 ноября - Структура исчерпаемых групп автоморфизмов (Александр Перепечко)

72 19 октября - Проблема линеаризации - II (Иван Аржанцев)

71 12 октября - Проблема линеаризации - I (Иван Аржанцев)

70 5 октября - Многогранник Гельфанда-Цетлина (Екатерина Преснова)

69 28 сентября - Модифицированные инварианты Макар-Лиманова и Дерксена (Сергей Гайфуллин)

68 14 сентября - Инварианты Макар-Лиманова и Дерксена (Вероника Киктева)

67 15 июня - Isometries of Mukai lattices (Иван Бельдиев)

66 25 мая - Map enumeration problem (Вероника Треумова)

65 11 мая - Wild automorphisms of graded algebras (Антон Трушин)

64 20 апреля - Hessenberg varieties (Екатерина Преснова)

63 6 апреля - Automorphism groups of affine varieties without non-algebraic elements (Александр Перепечко)

62 16 марта - Isotropy group of an LND of the polynomial algebra in three variables - II (Сергей Гайфуллин)

61 2 марта - Isotropy group of an LND of the polynomial algebra in three variables - I (Сергей Гайфуллин)

60 16 февраля - Characterization of affine toric varieties by their automorphism groups (Andriy Regeta)

59 4 февраля - Existence results for B-root subgroups on affine spherical varieties (Роман Авдеев)

58 2 февраля - The commuting derivations conjecture (Вероника Киктева)

57 19 января - Polytopal linear groups (Антон Шафаревич)

2021 год

56 29 декабря - Well-poised hypersurfaces (Виктория Боровик)

55 22 декабря - Gale duality and homogeneous toric varieties (Кирилл Шахматов)

54 8 декабря - On the family of affine threefolds xmy = F(x, z, t) - II (Nikhilesh Dasgupta)

53 24 ноября - On the family of affine threefolds xmy = F(x, z, t) - I (Nikhilesh Dasgupta)

52 10 ноября - Polynomial Lie Algebras (Денис Кремко)

51 20 октября - Holomorphic endomorphisms of C^n and countable subsets (Борис Билич)

50 13 октября - On Tits alternative for linear groups (Александр Попкович)

49 29 сентября - Подход к теории Гарсайда через CD-лемму - III (Виктор Лопаткин)

48 22 сентября - Подход к теории Гарсайда через CD-лемму - II (Виктор Лопаткин)

47 15 сентября - Подход к теории Гарсайда через CD-лемму - I (Виктор Лопаткин)

46 11 июня - Орбиты группы автоморфизмов аффинных орисферических многообразий (Сергей Гайфуллин)

45 28 мая - The Kaplansky zero divisor conjecture: a homotopical and homological approach (Viktor Lopatkin)

44 21 мая - Эквивалентность аффинных прямых на симплициальных торических многообразиях (Александр Перепечко)

43 7 мая - Структуры коммутативных алгебраических моноидов на аффинных поверхностях (Юлия Зайцева)

42 23 апреля - Квантовая торическая геометрия (Григорий Тароян)

41 2 апреля - G_a-действия вертикального типа на аффинных T-многообразиях (Кирилл Шахматов)

40 19 марта - Пространства арок торических многообразий (Александр Попкович)

39 3 марта - The prediction of Manin-Batyrev-Peyre on the number of rational points of algebraic varieties (Ratko Darda, University of Paris, France)

38 24 февраля - Variants of the method of Chabauty and Coleman to compute rational points on certain curves (Stevan Gajović, University of Groningen, the Netherlands)

37 17 февраля - Representations of reductive p-adic groups (Arnaud Mayeux, BICMR, Beijing, China)

36 10 февраля - Geometric properties of nets in plane and higher-dimensions (Roger Fidèle Ranomenjanahary, UTD, Dallas, USA)

35 3 февраля - An algebraic characterization of the affine three space (Nikhilesh Dasgupta, NMIMS, Mumbai, India)

34 20 января - Локально нильпотентные дифференцирования свободной алгебры ранга два (Борис Билич)

2020 год

33 9 декабря - Эйлерово-симметричные проективные многообразия (Антон Шафаревич)

18-22 ноября - Международная онлайн конференция "Topology and Geometry of Group Actions"

32 11 ноября - Квазиаффинные сферические многообразия и их группы автоморфизмов (Виктория Боровик)

31 28 октября - Рациональные комплексные многообразия, имеющие бесконечное число вещественных форм (Борис Билич)

30 21 октября - Бесконечная транзитивность подгрупп автоморфизмов A^2 (Григорий Тароян и Алиса Чистопольская)

29 15 октября - Полубесконечные грассманианы и алгебры токов (Александр Попкович)

28 3 октября - Автоморфизмы ненормальных торических многообразий - II (Сергей Гайфуллин)

27 26 сентября - Автоморфизмы ненормальных торических многообразий - I (Сергей Гайфуллин)

Семинар по аддитивным действиям на полных алгебраических многообразиях 2019-2020 гг.


 

Нашли опечатку?
Выделите её, нажмите Ctrl+Enter и отправьте нам уведомление. Спасибо за участие!
Сервис предназначен только для отправки сообщений об орфографических и пунктуационных ошибках.