• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11, корпус S, комната S938 (станции метро "Чистые пруды" и "Курская").

Телефон: +7(495) 772-95-90 *27319

Руководство
Руководитель департамента Кузнецов Сергей Олегович
Заместитель руководителя департамента Громов Василий Александрович
Статья
Efficient indexing of peptides for database search using Tide

Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.

Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.

Статья
Language models for some extensions of the Lambek calculus

Kanovich M., Kuznetsov S., Scedrov A.

Information and Computation. 2022. Vol. 287.

Статья
Triclusters of Close Values for the Analysis of 3D Data

Egurnov D., Ignatov D. I.

Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.

Глава в книге
Triclustering in Big Data Setting

Egurnov D., Точилкин Д. С., Ignatov D. I.

In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.

Глава в книге
Ontology-Controlled Automated Cumulative Scaffolding for Personalized Adaptive Learning

Dudyrev F., Neznanov A., Anisimova K.

In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.

Глава в книге
Modeling Generalization in Domain Taxonomies Using a Maximum Likelihood Criterion

Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.

In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.

Визит профессора Казухиса Макино на департамент анализа данных и искусственного интеллекта

14 мая 2015 Казухиса Макино, профессор Исследовательского института математических наук (RIMS) университета Киото, специалист в области комбинаторной оптимизации и дискретной математики, выступил на коллоквиуме ФКН с докладом на тему "Computational Aspects of Monotone Dualization" .

Abstract
Dualization of a monotone Boolean function represented by a conjunctive normal form (CNF) is a problem which, in different disguise, is ubiquitous in many areas including computer science, artificial intelligence, data mining, machine learning, and game theory to mention some of them. It is also one of the few problems whose precise tractability status (in terms of polynomial-time solvability) is still unknown, and now open for more than 30 years. We briefly survey computational results for this problem, which includes the remarkable result by M.L. Fredman and L.G. Khachiyan that the problem is solvable in quasi-polynomial time (and thus most likely not coNP-hard), as well as on follow-up works.



 Dualization of a Monotone Boolean Function (PDF, 1010 Кб)


18 мая 2015 года профессор Казухиса Макино выступил с докладом на заседании семинара НУЛ Интеллектуальные системы и структурный анализ на тему "On computing all abductive explanations from a propositional Horn theory".

Abstract:
Abduction is a fundamental mode of reasoning with applications in many areas of AI and Computer Science. The computation of abductive explanations is an important computational problem, which is at the core of early systems such as the ATMS and Clause Management Systems and is intimately related to prime implicate generation in propositional logic. Many algorithms have been devised for computing some abductive explanation, and the complexity of the problem has been well studied. However, little attention has been paid to the problem of computing multiple explanations, and in particular all explanations for an abductive query. We fill this gap and consider the computation of all explanations of an abductive query from a propositional Horn theory, or of a polynomial subset of them. Our study pays particular attention to the form of the query, ranging from a literal to a compound formula, to whether explanations are based on a set of abducible literals and to the representation of the Horn theory, either by a Horn conjunctive normal form (CNF) or model-based in terms of its characteristic models. For these combinations, we present either tractability results in terms of polynomial total-time algorithms, intractability results in terms of nonexistence of such algorithms (unless P = NP), or semi-tractability results in terms of solvability in quasi-polynomial time, established by polynomial-time equivalence to the problem of dualizing a monotone CNF expression. Our results complement previous results in the literature, and refute a longstanding conjecture by Selman and Levesque. They elucidate the complexity of generating all abductive explanations and shed light on related problems such as generating sets of restricted prime implicates of a Horn theory. The algorithms for tractable cases can be readily applied for generating a polynomial subset of explanations in polynomial time.