Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Адрес: 109028, г. Москва, Покровский бульвар, д. 11, корпус S, комната S938 (станции метро "Чистые пруды" и "Курская").
Телефон: +7(495) 772-95-90 *27319
Департамент анализа данных и искусственного интеллекта был создан в 2014 году на базе кафедры анализа данных и искусственного интеллекта. В его состав входят исследователи с мировым именем, активно участвующие в международных исследовательских проектах.
Acquaye F. L., Kertesz-Farkas A., Stafford Noble W.
Journal of Proteome Research. 2023. Vol. 22. No. 2. P. 577-584.
Vasilii A. Gromov, Yury N. Beschastnov, Korney K. Tomashchuk.
PeerJ Computer Science. 2023. Vol. 9. No. .
Kanovich M., Kuznetsov S., Scedrov A.
Information and Computation. 2022. Vol. 287.
Egurnov D., Ignatov D. I.
Automation and Remote Control. 2022. Vol. 83. No. 6. P. 894-902.
Egurnov D., Точилкин Д. С., Ignatov D. I.
In bk.: Complex Data Analytics with Formal Concept Analysis. Springer, 2022. P. 239-258.
Dudyrev F., Neznanov A., Anisimova K.
In bk.: Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium -23rd International Conference, AIED 2022, Durham, UK, July 27–31, 2022, Proceedings, Part II. Springer, 2022. P. 436-439.
Zhirayr Hayrapetyan, Nascimento S., Trevor F. et al.
In bk.: Information Systems and Technologies: WorldCIST 2022, Volume 2. Iss. 469. Springer, 2022. P. 141-147.
Dudyrev E., Semenkov Ilia, Kuznetsov S. et al.
Plos One. 2022. Vol. 17. No. 10.
14 мая 2015 Казухиса Макино, профессор Исследовательского института математических наук (RIMS) университета Киото, специалист в области комбинаторной оптимизации и дискретной математики, выступил на коллоквиуме ФКН с докладом на тему "Computational Aspects of Monotone Dualization" .
Abstract
Dualization of a monotone Boolean function represented by a conjunctive normal form (CNF) is a problem which, in different disguise, is ubiquitous in many areas including computer science, artificial intelligence, data mining, machine learning, and game theory to mention some of them. It is also one of the few problems whose precise tractability status (in terms of polynomial-time solvability) is still unknown, and now open for more than 30 years. We briefly survey computational results for this problem, which includes the remarkable result by M.L. Fredman and L.G. Khachiyan that the problem is solvable in quasi-polynomial time (and thus most likely not coNP-hard), as well as on follow-up works.
Dualization of a Monotone Boolean Function (PDF, 1010 Кб)
18 мая 2015 года профессор Казухиса Макино выступил с докладом на заседании семинара НУЛ Интеллектуальные системы и структурный анализ на тему "On computing all abductive explanations from a propositional Horn theory".
Abstract:
Abduction is a fundamental mode of reasoning with applications in many areas of AI and Computer Science. The computation of abductive explanations is an important computational problem, which is at the core of early systems such as the ATMS and Clause Management Systems and is intimately related to prime implicate generation in propositional logic. Many algorithms have been devised for computing some abductive explanation, and the complexity of the problem has been well studied. However, little attention has been paid to the problem of computing multiple explanations, and in particular all explanations for an abductive query. We fill this gap and consider the computation of all explanations of an abductive query from a propositional Horn theory, or of a polynomial subset of them. Our study pays particular attention to the form of the query, ranging from a literal to a compound formula, to whether explanations are based on a set of abducible literals and to the representation of the Horn theory, either by a Horn conjunctive normal form (CNF) or model-based in terms of its characteristic models. For these combinations, we present either tractability results in terms of polynomial total-time algorithms, intractability results in terms of nonexistence of such algorithms (unless P = NP), or semi-tractability results in terms of solvability in quasi-polynomial time, established by polynomial-time equivalence to the problem of dualizing a monotone CNF expression. Our results complement previous results in the literature, and refute a longstanding conjecture by Selman and Levesque. They elucidate the complexity of generating all abductive explanations and shed light on related problems such as generating sets of restricted prime implicates of a Horn theory. The algorithms for tractable cases can be readily applied for generating a polynomial subset of explanations in polynomial time.