Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка разработали специальную систему, которая с помощью больших языковых моделей сделает искусственный интеллект (AI) более эмоциональным при общении с человеком. Синтезом AI-эмоций займутся набирающие популярность мультиагентные модели. Научная работа о проведенном исследовании опубликована в рамках Международной совместной конференции по искусственному интеллекту — IJCAI 2024.
Тема «исследования и аналитика»
Сбер организовал R&D-день для исследовательских центров в области искусственного интеллекта. Команды Центра ИИ и других подразделений ВШЭ продемонстрировали свои компетенции и обсудили с бизнес-заказчиками перспективные задачи и подходы к их решению в будущих проектах.
Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета разработали новый метод редактирования изображений на основе глубинного обучения — StyleFeatureEditor. Он позволяет точно воссоздавать мельчайшие детали изображения и сохранять их при редактировании. С его помощью пользователи смогут изменять цвет волос или выражение лица без потери качества изображения. Результаты работы опубликованы на самой цитируемой конференции по компьютерному зрению CVPR 2024.
В семинаре «Искусственный интеллект для бизнеса» в пермском кампусе приняли участие исследователи Центра искусственного интеллекта НИУ ВШЭ, преподаватели и студенты, представители других университетов и крупных компаний – Сбербанк, ПЦБК, Кайрос Инжиниринг и др. В рамках дискуссий участники обсудили прикладные проекты и передовые исследования, посвященные различным аспектам теории и практики применения искусственного интеллекта для решения задач бизнеса. Организатором мероприятия выступила Международная лаборатория экономики нематериальных активов НИУ ВШЭ – Пермь.
Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ применили классические алгоритмы обучения с подкреплением для настройки генеративных потоковых сетей ( GFlowNets ). Это позволило улучшить работу GFlowNets , которые применяются уже три года для решения сложнейших научных задач на этапах моделирования, генерации гипотез и экспериментального проектирования. Результаты работы вошли в 5% лучших публикаций на Международной конференции по искусственному интеллекту и статистике AISTATS, которая состоялась 2–4 мая 2024 года в Валенсии.
В Центре искусственного интеллекта НИУ ВШЭ разработали программное обеспечение для моделирования радиоканала в беспроводной связи 5G и 6G, основанное на использовании трассировки лучей и машинного обучения. Программы позволяют узнать, как радиоволны распространяются между передатчиком и приемником, а также могут преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением.
Учёные Центра ИИ НИУ ВШЭ оформили патент на полезную модель — уникальный чехол для смартфонов, который помогает частным инвесторам в принятии инвестиционных решений. Главное достоинство чехла — агрегирование полезной информации из разных интернет-источников, систематизация и визуализация этих данных.
Ученые из НИУ ВШЭ разработали новый метод выявления дислексии у детей младшего школьного возраста. Он основан на сочетании алгоритмов машинного обучения, технологии записи движений глаз при чтении и демографических данных. Новый метод позволяет более точно и быстро выявить нарушения, в том числе на начальной стадии, чем традиционные методы диагностики. Результаты работы опубликованы в PLOS ONE .