Ученые Центра ИИ и Института искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ применили классические алгоритмы обучения с подкреплением для настройки генеративных потоковых сетей ( GFlowNets ). Это позволило улучшить работу GFlowNets , которые применяются уже три года для решения сложнейших научных задач на этапах моделирования, генерации гипотез и экспериментального проектирования. Результаты работы вошли в 5% лучших публикаций на Международной конференции по искусственному интеллекту и статистике AISTATS, которая состоялась 2–4 мая 2024 года в Валенсии.