• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФКН
Контакты

Тел.: +7 (495) 772-95-90 * 12332

computerscience@hse.ru

125319, Москва, Кочновский проезд, д. 3 (недалеко от станции метро "Аэропорт"). 

 

Руководство

Декан — Аржанцев Иван Владимирович

 

Первый заместитель декана факультета — Вознесенская Тамара Васильевна

 

Заместитель декана по научной работе и международным связям — Объедков Сергей Александрович

 

Заместитель декана по административно-финансовой работе — Плисецкая Ирина Александровна

Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
100/80/15
100 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
50/10
50 платных мест
10 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/80/15
80 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/3
15 бюджетных мест
5 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Математические методы оптимизации и стохастики

2 года
Очная форма обучения
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
20/10/12
20 бюджетных мест
10 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
20/10/5
20 бюджетных мест
10 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
30/3
30 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Optimising the Active Muon Shield for the SHiP Experiment at CERN

A. Baranov, Derkach D., Filatov A. et al.

Journal of Physics: Conference Series. 2017. Vol. 934. No. 1. P. 12050-12054.

Статья
Sugar Lego: Gene composition of bacterial carbohydrate metabolism genomic loci

Gelfand M. S., Kaznadzey А., Shelyakin P.

Biology Direct. 2017.

Статья
On tame, pet, domestic, and miserable impartial games
В печати

Gurvich V., Nhan Bao H.

Discrete Applied Mathematics. 2018.

Статья
Additive actions on toric varieties

Arzhantsev I., Romaskevich E.

Proceedings of the American Mathematical Society. 2017. Vol. 145. No. 5. P. 1865-1879.

Коллоквиум ФКН: Как создавать нейросети на основе классических вычислительных алгоритмов? Докладчик: Антон Осокин, НИУ ВШЭ

Мероприятие завершено

21 ноября состоится Коллоквиум ФКН: Как создавать нейросети на основе классических вычислительных алгоритмов?


Докладчик:
Осокин Антон Александрович

Департамент больших данных и информационного поиска: Доцент

За последние несколько лет технологии глубинного обучения позволили получить выдающиеся практические результаты в таких прикладных областях как компьютерное зрение и обработка естественного языка. Для создания моделей для практических задач чаще всего используют блоки (слои) из небольшого списка стандартных операций (полно-связные, свёрточные, рекуррентные слои). Ограниченность такого набора является одним из препятствий для переноса технологий на новые задачи. С другой стороны, для многих задач уже накоплено большое количество алгоритмов и практик, позволяющих получать хорошие результаты. Возможно ли строить глубинные модели не с чистого листа, а на основе уже существующих не-нейросетевых решений? В рамках этого доклада мы рассмотрим несколько способов построения нейросетей (или слоев нейросетей) на основе существующих алгоритмов из компьютерных наук. Будут затронуты прямое разворачивание алгоритмов в слои нейросетей, использование комбинаторной оптимизации для выбора активаций сети, дифференцирование результатов алгоритмов по входам. Мы посмотрим, как применять эти подходы на примере задач предсказания со структурированным выходом (structured-output prediction) и на их применения в задачах компьютерного зрения.

Афиша коллоквиума

Приглашаются все желающие.

Место проведения: Кочновский проезд, 3, ауд. 205 (2 этаж), начало в 18:10

Заказать пропуск на проход в здание можно на computerscience@hse.ru