• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Тел.: +7 (495) 772-95-90 * 12332

computerscience@hse.ru

125319, Москва, Кочновский проезд, д. 3 (недалеко от станции метро "Аэропорт"). 

 

Руководство

Декан — Аржанцев Иван Владимирович

 

Первый заместитель декана факультета — Вознесенская Тамара Васильевна

 

Заместитель декана по научной работе и международным связям — Объедков Сергей Александрович

 

Заместитель декана по административно-финансовой работе — Плисецкая Ирина Александровна

Коллоквиум

Для исследователя в такой разнообразной и быстро развивающейся области знаний, как компьютерные науки, важно сохранять широту кругозора и стремиться понимать, чем занимаются коллеги в смежных областях. Для этого нужна площадка, на которой специалисты встречаются и рассказывают друг другу о последних результатах понятным языком. Такой площадкой и является Коллоквиум факультета компьютерных наук ВШЭ — общефакультетский научный семинар, предназначенный для преподавателей и научных сотрудников факультета, аспирантов, магистрантов и студентов бакалавриата, а также для всех интересующихся компьютерными науками.

Заседания коллоквиума проходят, как правило, раз в две недели по вторникам в здании факультета компьютерных наук по адресу Кочновский проезд, дом 3, в аудитории 205

Заказать пропуск на проход в здание можно на computerscience@hse.ru

Записи мероприятий доступны на канале факультета на YouTube


2017 – 2018

21 ноября 2017, 18:10 – 19:30 

Кочновский проезд, 3, ауд. 205

Антон Осокин, 
НИУ ВШЭ

Как создавать нейросети на основе классических вычислительных алгоритмов?

За последние несколько лет технологии глубинного обучения позволили получить выдающиеся практические результаты в таких прикладных областях как компьютерное зрение и обработка естественного языка. Для создания моделей для практических задач чаще всего используют блоки (слои) из небольшого списка стандартных операций (полно-связные, свёрточные, рекуррентные слои). Ограниченность такого набора является одним из препятствий для переноса технологий на новые задачи. С другой стороны, для многих задач уже накоплено большое количество алгоритмов и практик, позволяющих получать хорошие результаты. Возможно ли строить глубинные модели не с чистого листа, а на основе уже существующих не-нейросетевых решений? В рамках этого доклада мы рассмотрим несколько способов построения нейросетей (или слоев нейросетей) на основе существующих алгоритмов из компьютерных наук. Будут затронуты прямое разворачивание алгоритмов в слои нейросетей, использование комбинаторной оптимизации для выбора активаций сети, дифференцирование результатов алгоритмов по входам. Мы посмотрим, как применять эти подходы на примере задач предсказания со структурированным выходом (structured-output prediction) и на их применения в задачах компьютерного зрения.

Афиша коллоквиума

 


 24 октября 2017, 18:10 – 19:30 

Кочновский проезд, 3, ауд. 205

Мария Попцова, 
НИУ ВШЭ

Методы машинного обучения и большие данные биоинформатики

Проект расшифровки первого генома человека занял 13 лет, потребовал около 1,5 миллиарда долларов и работы огромного числа институтов и университетов мира. Революция в технологиях секвенирования, произошедшая в начале 21 века, позволила сократить затраты до 2 дней и 1000 долларов. Технологии секвенирования следующего поколения (Next Generation Sequencing, или NGS) производят данные геномики, эпигеномики, транскриптомики, протеомики, метаболомики и других “омик” молекулярной биологии. Как только стало возможно секвенировать буквально “все”, были запущены международные консорциумные проекты, такие как проект 1000 геномов человека, Hap Map – исследование разнообразия человека на 450 геномов трех рас, ENCODE – энциклопедия ДНК-элементов, The Roadmap Epigenomics (маркировка эпигенетических факторов, формирующих ткани) и проекты по секвенированию всех типов раковых опухолей (The Cancer Genome Atlas, TCGA и International Cancer Genome Consortium, ICGC). Биоинформатика на наших глазах стала областью, быстро генерирующей большие данные, нуждающиеся в обработке и интерпретации. В лекции я расскажу о том, что это за данные с точки зрения аналитика данных и как методы машинного обучения успешно примененяются для решения задач аннотации и поиска новых связей между функциональными элементами генома. Предварительное знание биоинформатики не предполагается.

Афиша коллоквиума


5 октября 2017, 18:10 – 19:30 

Кочновский проезд, 3, ауд. 205

Константин Воронцов, 
Яндекс/МФТИ/НИУ ВШЭ

Многокритериальный тематический анализ текстовых коллекций

Тематическое моделирование — это область статистического анализа текстов, активно развивающаяся последние 15 лет. Тематическая модель коллекции текстовых документов определяет, к каким темам относится каждый документ и какие слова образуют каждую тему. Построение тематической модели сводится к решению некорректно поставленной задачи матричного разложения. Для доопределения решения используются дополнительные критерии-регуляризаторы. Тематическое моделирование отличается огромным разнообразием регуляризаторов, с помощью которых можно строить тематические иерархии, учитывать лингвистические ограничения, вовлекать нетекстовые данные о времени, авторах, пользователях, ссылках, взаимосвязях. В лекции будет рассказано, как все эти ограничения формализуются на языке регуляризации, как их можно комбинировать друг с другом для построения моделей с заданными свойствами и как теория аддитивной регуляризации приводит к модульной технологии тематического моделирования.

Афиша коллоквиума


11 сентября 2017, 16:40 – 18:10 

Кочновский проезд, 3, ауд. 317

Егор Костылев, 
University of Oxford

Расширение well-designed SPARQL

SPARQL — это стандартный язык запросов для RDF-данных. Одной из важнейших особенностей этого языка относительно многих других является оператор OPTIONAL, допускающий частичные ответы в тех случаях, когда полные ответы недоступны из-за недостатка данных. Однако запросы с OPTIONAL имеют высокую сложность — соответствующая проблема является PSPACE-полной. Фрагмент языка, допускающий только ограниченное использование OPTIONAL (так называемый well-designed SPARQL), имеет более низкую сложность — coNP. Однако, как показывают наши исследования, только чуть больше половины реальных запросов с OPTIONAL к DBpedia попадают в этот фрагмент. Мы предлагаем новый класс запросов, расширяющий well-designed SPARQL, который, во-первых, включает 99% запросов с OPTIONAL и, во-вторых, также имеет coNP-сложность вычисления. Мы также исследуем другие свойства нового фрагмента, такие как сложность проверки эквивалентности и вычислительная мощность.

Афиша коллоквиума


11 сентября 2017, 18:10 – 19:30 

Кочновский проезд, 3, ауд. 317

Wray Buntine, 
Monash University

Learning on networks of distributions for discrete data

I will motivate the talk by reviewing some state of the art models for problems like matrix factorisation models for link prediction and tweet clustering. Then I will review the classes of distributions that can be strung together in networks to generate discrete data. This allows a rich class of models that, in its simplest form, covers things like Poisson matrix factorisation, Latent Dirichlet allocation, and Stochastic block models, but, more generally, covers complex hierarchical models on network and text data. The distributions covered include so-called non-parametric distributions such as the Gamma process. Accompanying these are a set of collapsing and augmentation techniques that are used to generate fast Gibbs samplers for many models in this class. To complete this picture, turning complex network models into fast Gibbs samplers, I will illustrate our recent methods of doing matrix factorisation with side information (e.g., GloVe word embeddings), done for link prediction, for instance, for citation networks.

Афиша коллоквиума


 

Что было в 2016/2017 году


Что было в 2015/2016 году


Что было в 2014/2015 году