• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Тел.: +7 (495) 772-95-90 * 12332

computerscience@hse.ru

125319, Москва, Кочновский проезд, д. 3 (недалеко от станции метро "Аэропорт"). 

 

Руководство

Декан — Аржанцев Иван Владимирович

 

Первый заместитель декана факультета — Вознесенская Тамара Васильевна

 

Заместитель декана по научной работе и международным связям — Объедков Сергей Александрович

 

Заместитель декана по административно-финансовой работе — Гергарт Ирина Александровна

Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
100/90/10
100 бюджетных мест
90 платных мест
10 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/100/10
80 бюджетных мест
100 платных мест
10 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Математические методы оптимизации и стохастики

2 года
Очная форма обучения
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
40/10/5
40 бюджетных мест
10 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
20/10/10
20 бюджетных мест
10 платных мест
10 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
30
30 платных мест
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Bias-Corrected Estimation in Continuous Sampling Plans
В печати

Decrouez G. G., Robinson A.

Risk Analysis: An International Journal. 2017.

Статья
Regularized Newton methods for minimizing functions with Hölder continuous Hessians

Nesterov Y., Grapiglia G.

2017 SIAM Journal on Optimization. 2017.

Глава в книге
Resource Equivalences in Petri Nets

Lomazova I. A.

In bk.: Application and Theory of Petri Nets and Concurrency. 38th International Conference, PETRI NETS 2017, Zaragoza, Spain, June 25–30, 2017, Proceedings. Vol. 10258: Lecture Notes in Computer Science. Switzerland: Springer International Publishing AG, 2017. P. 19-34.

Глава в книге
Some Properties of Antistochastic Strings

Milovanov A.

In bk.: Computer Science -- Theory and Applications 10th International Computer Science Symposium in Russia, CSR 2015. Vol. 9139. Springer, 2015. P. 339-349.

Статья
The Euler binary partition function and subdivision schemes

Protasov V. Y.

Mathematics of Computation. 2017. No. 86. P. 1499-1524.

Мини-курс "Microscopy image analysis". Лектор: Петер Хорват, PhD, Hungarian Academy of Sciences, Biology Research Institute/Finnish Institute for Molecular Medicine

Мероприятие завершено

16 февраля стартует мини-курс «Microscopy image analysis». Лектор - Петер Хорват, PhD, Hungarian Academy of Sciences, Biology Research Institute/Finnish Institute for Molecular Medicine

 
Description:

High-content screening (HCS) combines cell biology (including all molecular techniques), automated high resolution microscopy, informatics and robotics. It aims to discover small and large molecules (such as drugs, siRNAs) that change the phenotypes of cell in a desired manner. High-content analysis (HCA) refers to the analysis and evaluation of large data produced during an HCS scenario. Despite the fact that informatics was revolutionized recently, HCA suffers from the lack of solutions to the computational problems that arise and the limited computational capacity. To overcome these, recently numerous image analysis and machine learning approaches were proposed. This course will give an insight into the different most popular methods including automated microscopy, image processing, and multiparametric analysis of the data. During this course we will create 10.000-100.000 images (virtually in this case) and we will develop methods to analyze them using image segmentation and supervised machine learning. 

Thematic:

High content screening – Introduction, History

High content microscopy

Data storage, databases

Image correction methods (CIDRE)

Image analysis, image segmentation, 2d/3d

Feature extraction

Multiparametric quality control

Machine learning methods (Classification, regression)

Matlab applications

Recommended literature:

1. Taylor, Haskins, Giulliano: High Content Screening (Methods in Molecular Biology); ISBN-10: 1588297314 | ISBN-13: 978-1588297310 | Edition: 2006

2. Steven A. Haney; High Content Screening: Science, Techniques and Applications

3. Marjo Götte and Daniela Gabriel (2011). Image-Based High-Content Screening in Drug Discovery, Drug Discovery and Development - Present and Future, Dr. Izet Kapetanović (Ed.), ISBN: 978-953-307-615-7

4. Bickle M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem. 2010 Sep;398(1):219-26

5. I. Banerjee, Y. Yamauchi, A. Helenius, P. Horvath: High-content analysis of sequential events during the early phase of influenza A virus infection; PLoS One 2013

6. Peter Horvath, Thomas Wild, Ulrike Kutay, Gabor Csucs. Machine learning improves the precision and robustness of high-content screens – using non-linear multi-parametric methods to analyze screening results. J. Biomolecular Screening. 2011 

Расписание

16 февраля, четврег – 18.00 – 21.00, аудитория 416

21 февраля, вторник – 15.10 – 18.00, аудитория 327

Зарегистрироваться можно письмом на адрес ikorolkova@hse.ru