• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11

Телефон: +7 (495) 531-00-00 *27254

Email: computerscience@hse.ru

 

Руководство
Первый заместитель декана Вознесенская Тамара Васильевна
Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович
Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич
Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна
Образовательные программы
Бакалаврская программа

Компьютерные науки и анализ данных

4 года
Очная форма обучения
75/5
75 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
125/60/30
125 бюджетных мест
60 платных мест
30 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета «Прикладной анализ данных»

4 года
Очная форма обучения
90/12
90 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
120/80/30
120 бюджетных мест
80 платных мест
30 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
25/5/1
25 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Магистр по наукам о данных

2 года
Заочная
63/27
63 платных мест
27 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Математика машинного обучения

2 года
Очная форма обучения
15/5/1
15 бюджетных мест
5 платных мест
1 платное место для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Машинное обучение и высоконагруженные системы

2 года
Очная форма обучения
28/2
28 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Науки о данных (Data Science)

2 года
Очная форма обучения
65/15/20
65 бюджетных мест
15 платных мест
20 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/10
25 бюджетных мест
5 платных мест
10 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
50/1
50 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Глава в книге
Black-Box Optimization with Local Generative Surrogates

Belavin V., Ustyuzhanin A., Широбоков С. К. et al.

In bk.: Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Curran Associates, Inc., 2020. P. 14650-14662.

Статья
The multiplicative-additive Lambek calculus with subexponential and bracket modalities

Kanovich M., Kuznetsov S., Scedrov A.

Journal of Logic, Language and Information. 2021. Vol. 30. No. 1. P. 31-88.

Colloquium "Positional Embedding in Transformer-based Models"

Мероприятие завершено

September 28, 18:10

Speaker: Tatiana Likhomanenko (Apple)

Title: Positional Embedding in Transformer-based Models

Abstarct:

Transformers have been shown to be highly effective on problems involving sequential modeling, such as in machine translation (MT) and natural language processing (NLP). Following its success on these tasks, the Transformer architecture raised immediate interest in other domains: automatic speech recognition (ASR), music generation, object detection, and finally image recognition and video understanding. Two major components of the Transformer are the attention mechanism and the positional encoding. Without the latter, vanilla attention Transformers are invariant with respect to input tokens permutations (making "cat eats fish" and "fish eats cat" identical to the model). In this talk we will discuss different approaches on how to encode positional information, their pros and cons: absolute and relative, fixed and learnable, 1D and multidimensional, additive and multiplicative, continuous and augmented positional embeddings. We will also focus on how well different positional embeddings generalize to unseen positions for both interpolation and extrapolation tasks.

Registration