• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11

Телефон: +7 (495) 531-00-00 *27254

Email: computerscience@hse.ru

 

Руководство
Первый заместитель декана Вознесенская Тамара Васильевна
Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович
Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич
Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна
Образовательные программы
Бакалаврская программа

Компьютерные науки и анализ данных

4 года
Очная форма обучения
40/5
40 платных мест
5 платных мест для иностранцев
RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
145/70/20
145 бюджетных мест
70 платных мест
20 платных мест для иностранцев
RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Прикладной анализ данных

4 года
Очная форма обучения
90/12
90 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся полностью на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
135/100/20
135 бюджетных мест
100 платных мест
20 платных мест для иностранцев
RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Экономика и анализ данных

4 года
Очная форма обучения
205/160/20
205 бюджетных мест
160 платных мест
20 платных мест для иностранцев
RUS+ENG
Обучение ведется на русском и частично на английском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
25/5/1
25 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS+ENG
Обучение ведется на русском и частично на английском языке
Магистерская программа

Магистр по наукам о данных

2 года
Заочная
21/9
21 платное место
9 платных мест для иностранцев
ENG
Обучение ведётся полностью на английском языке
Магистерская программа

Математика машинного обучения

2 года
Очная форма обучения
18/5/1
18 бюджетных мест
5 платных мест
1 платное место для иностранцев
ENG
Обучение ведётся полностью на английском языке
Магистерская программа

Машинное обучение и высоконагруженные системы

2 года
Очная форма обучения
28/2
28 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся полностью на русском языке
Магистерская программа

Науки о данных (Data Science)

2 года
Очная форма обучения
30/10/10
30 бюджетных мест
10 платных мест
10 платных мест для иностранцев
RUS/ENG
Обучение ведется на русском или английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/5
25 бюджетных мест
5 платных мест
5 платных мест для иностранцев
ENG
Обучение ведётся полностью на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/1
15 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS
Обучение ведётся полностью на русском языке
Магистерская программа

Современные компьютерные науки

2 года
Очная форма обучения
32/5
32 бюджетных мест
5 платных мест
RUS
Обучение ведётся полностью на русском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
50/1
50 платных мест
1 платное место для иностранцев
RUS+ENG
Обучение ведется на русском и частично на английском языке
Глава в книге
Towards Understanding and Answering Comparative Questions

Bondarenko A., Ajjour Y., Dittmar V. et al.

In bk.: WSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining. Association for Computing Machinery (ACM), 2022. P. 66-74.

Статья
Empirical Variance Minimization with Applications in Variance Reduction and Optimal Control

Belomestny Denis, Iosipoi L., Paris Q. et al.

Bernoulli: a journal of mathematical statistics and probability. 2022. Vol. 28. No. 2. P. 1382-1407.

Глава в книге
Exponential savings in agnostic active learning through abstention

Puchkin N., Zhivotovskiy N.

In bk.: Proceedings of Machine Learning Research. Vol. 134: Conference on Learning Theory. PMLR, 2021. P. 3806-3832.

Статья
Measurement of the W boson mass

Derkach D., Maevskiy A., Karpov M. et al.

Journal of High Energy Physics. 2022. P. 1-38.

Глава в книге
Empirical Study of Transformers for Source Code

Chirkova N., Troshin S.

In bk.: ESEC/FSE 2021: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Association for Computing Machinery (ACM), 2021. P. 703-715.

Открытое заседание Ученого совета

Мероприятие завершено

Дата проведения: 10 февраля 2022 года
Время проведения: 18:00-19:00
Место проведения: Zoom

Повестка открытого заседания:

1. Научный доклад «Моделирование концептуального обобщения».

Докладчик - Миркин Борис Григорьевич, профессор департамента анализа данных и искусственного интеллекта, ведущий научный сотрудник Международного центра анализа и выбора решений.

Аннотация:

Речь идет о попытке моделирования фундаментальной характеристики когнитивной системы человека - способности к обобщению концепций/понятий. Другие индуктивные подходы, включая глубокое обучение, обобщают характеристики данных - мы обобщаем понятия. Для этого используется система понятий предметной области, организованная в виде таксономии, т.е. корневого дерева, узлам которого приписаны понятия так, чтобы дерево отражало отношение гипонимии/гиперонимии: А входит в Б т.и т.т. когда А - это Б, ограниченное определенным образом.

Мы даем определение наиболее специфического обобщения для нечеткого множества Ф терминальных/листовых понятий таксономии. Это обобщение поднимает множество Ф в более общее «головное понятие» в верхних уровнях дерева, которое покрывает Ф наиболее «тесным» образом, с точностью до минимального числа ошибок, «пробелов» и «выбросов». Разработаны алгоритмы оптимального подъема любого нечеткого Ф как для критерия максимальной парсимонии (экономии), так и критерия максимального правдоподобия.

Имеется определенный задел в двух прикладных направлениях:

- анализ тенденций научных исследований в предметной области путем обработки коллекции публикаций в этой области (обработка включает получение нечетких кластеров понятий таксономии, исходя из матрицы релевантности между листовыми понятиями и текстами, которая получается с использованием разработанной нами технологии суффиксных деревьев, аннотированных частотами встречаемости);

- увеличение численности аудитории таргетированной интернет-рекламы без потери ее качества.

По нашему мнению, данная конструкция также может использоваться для моделирование определенных особенностей когнитивных систем, таких как предвзятость.

(Работа ведется совместно с Др. С. Насименто (Лиссабон), Проф. Т. Феннер (Лондон), к.т.н. Д. Фроловым и Ж. Айрапетяном).

2. Научный доклад «Использование методов машинного обучения для изучения свойств и поиска новых материалов».

Докладчик - Устюжанин Андрей Евгеньевич, заведующий научно-учебной лабораторией методов анализа больших данных, доцент базовой кафедры Яндекс департамента больших данных и информационного поиска.

Аннотация:

Развитие человечества непрерывно связано с поиском и развитием новых материалов - недаром каждый новый век имеет свое название (каменный, бронзовый, железный и так далее). Сегодня, в 21 веке, сложно дать какое-то однозначное название или характеристику, хотя по некоторым данным мы находимся в веке кремния. В то же время использование различных природных материалов не всегда отличается высокой эффективностью. По большей части мы полагаемся на известные химические соединения, сформировавшиеся в окружающей среде за миллионы лет (железо, алюминий, уголь, нефть). С одной стороны, природные ресурсы быстро истощаются, с другой - потребности человечества в материалах, обладающих новыми свойствами, постоянно растут: сверхпроводники, фильтры, катализаторы, функциональные материалы. Актуальной научной задачей становится поиск таких структурных и химических соединений, которые адекватно соответствуют новым вызовам эффективности, функциональности и сохранения окружающей среды.

В своем докладе я обрисую общие контуры данного исследовательского направления - какие подходы используются для моделирования и поиска новых материалов и с какими проблемами сталкиваются исследователи. Основным фокусом рассказа будет описание роли машинного обучения в решении данных проблем. В заключении я коснусь проектов, которые ведет лаборатория методов анализа больших данных совместно с партнерами из Иннополиса и Национального Университета Сингапура.

На странице открытых заседаний Ученого совета ФКН Вы сможете найти более подробную информацию и видеозаписи прошедших заседаний.

Zoom

Данные для входа