Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Адрес: 109028, г. Москва, Покровский бульвар, д. 11
Телефон: +7 (495) 531-00-00 *27254
Email: computerscience@hse.ru
Факультет готовит разработчиков и исследователей. Программа обучения сформирована с учётом опыта ведущих американских и европейских университетов, таких как Stanford University (США) и EPFL (Швейцария), а также Школы анализа данных — одной из самых сильных магистратур в области computer science в России. Широкий список курсов по выбору и значительная доля программы, выделенная под них, позволит каждому студенту сформировать свою собственную образовательную траекторию. В основе обучения — практика и проектная работа.
Bondarenko A., Ajjour Y., Dittmar V. et al.
In bk.: WSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining. Association for Computing Machinery (ACM), 2022. P. 66-74.
Belomestny Denis, Iosipoi L., Paris Q. et al.
Bernoulli: a journal of mathematical statistics and probability. 2022. Vol. 28. No. 2. P. 1382-1407.
Puchkin N., Zhivotovskiy N.
In bk.: Proceedings of Machine Learning Research. Vol. 134: Conference on Learning Theory. PMLR, 2021. P. 3806-3832.
Derkach D., Maevskiy A., Karpov M. et al.
Journal of High Energy Physics. 2022. P. 1-38.
In bk.: ESEC/FSE 2021: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Association for Computing Machinery (ACM), 2021. P. 703-715.
Дата проведения: 10 февраля 2022 года
Время проведения: 18:00-19:00
Место проведения: Zoom
Повестка открытого заседания:
1. Научный доклад «Моделирование концептуального обобщения».
Докладчик - Миркин Борис Григорьевич, профессор департамента анализа данных и искусственного интеллекта, ведущий научный сотрудник Международного центра анализа и выбора решений.
Аннотация:
Речь идет о попытке моделирования фундаментальной характеристики когнитивной системы человека - способности к обобщению концепций/понятий. Другие индуктивные подходы, включая глубокое обучение, обобщают характеристики данных - мы обобщаем понятия. Для этого используется система понятий предметной области, организованная в виде таксономии, т.е. корневого дерева, узлам которого приписаны понятия так, чтобы дерево отражало отношение гипонимии/гиперонимии: А входит в Б т.и т.т. когда А - это Б, ограниченное определенным образом.
Мы даем определение наиболее специфического обобщения для нечеткого множества Ф терминальных/листовых понятий таксономии. Это обобщение поднимает множество Ф в более общее «головное понятие» в верхних уровнях дерева, которое покрывает Ф наиболее «тесным» образом, с точностью до минимального числа ошибок, «пробелов» и «выбросов». Разработаны алгоритмы оптимального подъема любого нечеткого Ф как для критерия максимальной парсимонии (экономии), так и критерия максимального правдоподобия.
Имеется определенный задел в двух прикладных направлениях:
- анализ тенденций научных исследований в предметной области путем обработки коллекции публикаций в этой области (обработка включает получение нечетких кластеров понятий таксономии, исходя из матрицы релевантности между листовыми понятиями и текстами, которая получается с использованием разработанной нами технологии суффиксных деревьев, аннотированных частотами встречаемости);
- увеличение численности аудитории таргетированной интернет-рекламы без потери ее качества.
По нашему мнению, данная конструкция также может использоваться для моделирование определенных особенностей когнитивных систем, таких как предвзятость.
(Работа ведется совместно с Др. С. Насименто (Лиссабон), Проф. Т. Феннер (Лондон), к.т.н. Д. Фроловым и Ж. Айрапетяном).
2. Научный доклад «Использование методов машинного обучения для изучения свойств и поиска новых материалов».
Докладчик - Устюжанин Андрей Евгеньевич, заведующий научно-учебной лабораторией методов анализа больших данных, доцент базовой кафедры Яндекс департамента больших данных и информационного поиска.
Аннотация:
Развитие человечества непрерывно связано с поиском и развитием новых материалов - недаром каждый новый век имеет свое название (каменный, бронзовый, железный и так далее). Сегодня, в 21 веке, сложно дать какое-то однозначное название или характеристику, хотя по некоторым данным мы находимся в веке кремния. В то же время использование различных природных материалов не всегда отличается высокой эффективностью. По большей части мы полагаемся на известные химические соединения, сформировавшиеся в окружающей среде за миллионы лет (железо, алюминий, уголь, нефть). С одной стороны, природные ресурсы быстро истощаются, с другой - потребности человечества в материалах, обладающих новыми свойствами, постоянно растут: сверхпроводники, фильтры, катализаторы, функциональные материалы. Актуальной научной задачей становится поиск таких структурных и химических соединений, которые адекватно соответствуют новым вызовам эффективности, функциональности и сохранения окружающей среды.
В своем докладе я обрисую общие контуры данного исследовательского направления - какие подходы используются для моделирования и поиска новых материалов и с какими проблемами сталкиваются исследователи. Основным фокусом рассказа будет описание роли машинного обучения в решении данных проблем. В заключении я коснусь проектов, которые ведет лаборатория методов анализа больших данных совместно с партнерами из Иннополиса и Национального Университета Сингапура.
На странице открытых заседаний Ученого совета ФКН Вы сможете найти более подробную информацию и видеозаписи прошедших заседаний.
Идентификатор конференции: 962 8698 6174
Код доступа: 147597