• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФКН
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11

Телефон: +7 (495) 531-00-00 *27254

Email: computerscience@hse.ru

 

Руководство
Первый заместитель декана Вознесенская Тамара Васильевна
Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович
Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич
Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна
Мероприятия
19 ноября – 20 ноября
26 ноября – 30 ноября
30 ноября, 10:00
19 февраля 2020 – 22 февраля 2020
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
117/80/30
117 бюджетных мест
80 платных мест
30 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
80/12
80 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
110/70/30
110 бюджетных мест
70 платных мест
30 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
20/5/1
20 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Магистр по наукам о данных

2 года
Заочная
100
100 платных мест
ENG
Обучение ведётся на английском языке
Магистерская программа

Науки о данных

2 года
Очная форма обучения
60/15/20
60 бюджетных мест
15 платных мест
20 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/15
25 бюджетных мест
5 платных мест
15 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/1
35 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Sparse covariance matrix estimation in high-dimensional deconvolution

Belomestny D., Trabs M., Tsybakov A.

Bernoulli: a journal of mathematical statistics and probability. 2019. Vol. 25. No. 3. P. 1901-1938.

Статья
Axiomatization of provable n-provability

Beklemishev L. D., Kolmakov E.

Journal of Symbolic Logic. 2019. Vol. Volume 84. No. Issue 2. P. 849-869.

Глава в книге
ChronosDB in Action: Manage, Process, and Visualize Big Geospatial Arrays in the Cloud

Rodriges Zalipynis R. A.

In bk.: Proceedings of the ACM SIGMOD International Conference on Management of Data. NY: ACM, 2019. P. 1985-1988.

iPavlov, детектор дорожного светофора и анализ тональности текстов — итоги первого выпуска программы профессиональной переподготовки

В начале декабря состоялась первая защита дипломов программы профессиональной переподготовки "Современный анализ данных, глубокое обучение и приложения". За год слушатели прошли путь от изучения математики и программирования до работы с нейронными сетями, компьютерным зрением и анализом текстов. Мы спросили выпускников программы о том, почему они решили изучать данную область, что узнали за время обучения, какие итоговые проекты выбрали и чем собираются заниматься в будущем.

Евгений Головенков. В 2010 году окончил магистратуру Юго-Западного государственного университета  по направлению “Информатика и вычислительная техника”. Тема выпускной работы: “Нейросетевой метод объединения эмбеддингов слов и предложений в задаче контекстно-зависимого ранжирования ответов чат-бота”.

О возможности получить дополнительное образование по анализу данных в Высшей школе экономики я узнал от своего коллеги Вячеслава Дуброва. Он преподавал здесь краткосрочную программу повышения квалификации (ранее - Машинное обучение и продвинутые методы машинного обучения). Подумав, я решил поступить на годовой курс, начать обучение с базовых понятий и продвинуться к более сложным. Обучение дало мне понимание большого спектра технологий машинного обучения. Материал и знания, полученные на курсе, позволили влиться в комьюнити, начать участвовать в соревнованиях, семинарах и конференциях.  Так, за пару месяцев до окончания программы, я принял участие в двух летних школах: в Летней школе машинного обучения  и Conversational Intelligence Summer School. В августе после прохождения стажировки я устроился на позицию младшего исследователя в проект iPavlov, где занялся разработкой ранжирующих моделей ответов чат-ботов. С этой тематикой и была связана моя выпускная работа.

Виталий Белов. В 2010 году окончил Московский технический университет имени Н.Э. Баумана по специальности “Приборы системы ориентации, стабилизации и навигации”. Тема выпускной работы: “Детектор и трекер состояния дорожного светофора”.

Проработав несколько лет в IT, решил, что необходимо получить дополнительное образование в этой области.  Темой машинного обучения я заинтересовался около 3-х лет назад. В течение этого времени прошел курс «Machine learning» на Coursera от Andrew Ng и несколько курсов по Python. Но все равно было желание получить системное образование в данной области, и я решил поступить на программу профессиональной переподготовки «Современный анализ данных, глубокое обучение и приложения». Значительная часть курса была посвящена области глубокого обучения и компьютерного зрения.  Данное направление находит применение в таких интересных задачах, как автомобильные автопилоты, детектирование объектов на видео, распознавание жестов и так далее.

Мне интересна данная область, поэтому решил выбрать тему для защиты, связанную с ней. Я обучил модель локализовывать светофор на видео и классифицировать его состояние в реальном времени. В процессе учебы была практика участия в различных Kaggle соревнованиях под руководством преподавателей. Теперь я планирую продолжать участвовать в различных соревнованиях по машинному обучению, посещать профильные мероприятия и применять полученные знания в работе.


Татьяна Санникова. В 2012 году окончила магистратуру Высшей школы экономики по направлению “Экономика”. Тема выпускной работы: “Глубинное обучение для анализа тональности текстов”.

Раньше я уже занималась анализом данных, но инструменты были сравнительно примитивными. Например, нужно было для прогнозирования построить регрессию на данных (я работала с динамическими панелями). Признаки практически подбирались вручную, так сказать, из здравого смысла, по данным, которые были доступны. Можно было экспериментировать с различными вариациями признаков, использовать нелинейность как для признаков (их комбинации в виде произведения, квадратов и логарифмов), так и для самой целевой функции. Необходимо было при каждой комбинации проверять коэффициенты признаков на значимость, и, конечно, проблема, с которой постоянно сталкивается любой исследователь анализа данных, это “переобучение” модели. За время обучения я узнала о современных инструментах анализа, как изящно и просто можно бороться с этими трудностями, сейчас руки исследователя свободнее и сильнее. Этот курс помог мне усовершенствовать инструмент, позволяющий проще, быстрее и, главное, точнее решать поставленные задачи. В качестве заключительного проекта предпочтение было отдано обработке текстовых данных с помощью машинного обучения и нейронных сетей. Хотя оба крупных модуля, обработка текстов и компьютерное зрение, показались мне интересными, но в итоге выбор был сделан на более (для меня) сложное направление, для более глубокого изучения этой области. Задача, которая стояла передо мной (анализ тональности отзывов), может быть использована в маркетинговых и социальных исследованиях, результаты похожих задач могут пригодиться в экономической и политической сферах. Для меня цель курса была узнать и освоить новые возможности обработки данных, а итоговая дипломная работа — это применение полученных за год знаний и навыков. И эти возможности и, конечно, современная доступность данных открывают огромный диапазон для новых интересных задач.


 22 января начнет занятия уже четвертая группа программы профессиональной переподготовки. Узнать подробности и подать заявку на обучения можно на сайте Центра непрерывного образования.