• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Тел.: +7 (495) 772-95-90 * 12332

computerscience@hse.ru

125319, Москва, Кочновский проезд, д. 3 (недалеко от станции метро "Аэропорт"). 

 

Руководство

Декан — Аржанцев Иван Владимирович

 

Первый заместитель декана факультета — Вознесенская Тамара Васильевна

 

Заместитель декана по научной работе и международным связям — Объедков Сергей Александрович

 

Заместитель декана по административно-финансовой работе — Плисецкая Ирина Александровна

Мероприятия
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
100/80/15
100 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
50/10
50 платных мест
10 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/80/15
80 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/3
15 бюджетных мест
5 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Математические методы оптимизации и стохастики

2 года
Очная форма обучения
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
20/10/12
20 бюджетных мест
10 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
20/10/5
20 бюджетных мест
10 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
30/3
30 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Colourings of Uniform Hypergraphs with Large Girth and Applications

Shabanov D. S., Kupavskii A.

Combinatorics Probability and Computing. 2017.

Глава в книге
A Fast Scaling Algorithm for the Weighted Triangle-Free 2-Matching Problem

Artamonov S., Babenko M. A.

In bk.: Combinatorial Algorithms. 26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015, Revised Selected Papers. Vol. 9538. Switzerland: Springer International Publishing, 2016. P. 25-37.

Глава в книге
Any-Angle Pathfinding for Multiple Agents Based on SIPP Algorithm

Yakovlev K., Andreychuk A.

In bk.: Proceedings of the 27th International Conference on Automated Planning and Scheduling (ICAPS 2017). Palo Alto: AAAI Press, 2017. P. 586-594.

Статья
Cohomology of toric origami manifolds with acyclic proper faces

Ayzenberg A., Masuda M., Park S. et al.

Journal of Symplectic Geometry. 2017. Vol. 15. No. 3. P. 645-685.

ИТ-лекторий: Семинар по глубокому обучению или как стать Data Scientist’ом. Докладчик: Дмитрий Коробченко, NVIDIA

Мероприятие завершено


Приглашаем вас на открытый семинар по глубокому обучению (Deep Learning), на котором вы узнаете о современном машинном обучении, глубоких нейросетях и о том, с чего начать путь datascientist'а. Спикер расскажет о том, где и для чего сегодня применяется DL, насколько это эффективно по сравнению с иными подходами, покажет, как с этим работать, и укажет конкретные шаги, с которых следует начать.

Помимо этого, у вас будет возможность совместно с экспертом решить с нуля классическую задачу распознавания изображений с помощью глубокой нейросети. 

Не забудьте ноутбук!

В конце семинара вы сможете задать эксперту все интересующие вопросы.

О спикере: Дмитрий Коробченко, NVIDIA

«Я с отличием закончил ВМК МГУ. Основной областью научных интересов в университете являлось компьютерное зрение. После университета работал инженером по разработке ПО в IBM. Затем около пяти лет работал в Samsung, где занимался разнообразными исследовательскими задачами, связанными с машинным обучением, компьютерным зрением и обработкой сигналов, а также являлся руководителем проектов. Сейчас работаю в NVIDIA на позиции Deep Learning R&D engineer, где продолжаю путь исследователя и разработчика в этой области. С удовольствием провожу открытые научно-популярные лекции по Deep Learning (обзор технологии и последних результатов)»

 

Место: ФКН НИУ ВШЭ (Кочновский пр., 3), ауд. 509
Время: 7 февраля, 16:40-19:30


Обязательная регистрация